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Abstract

An α-Potential Game Framework for Non-Cooperative Dynamic Games:
Theory and Algorithms

by

Xinyu Li

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

Multi-agent systems naturally arise in many real-world scenarios where multiple decision-
makers interact, such as autonomous driving, network design, and financial markets. Analyz-
ing multi-agent non-cooperative games is inherently challenging due to the asymmetry among
players and the diverse structures of the games. This thesis introduces a unified framework
to analyze N -player non-cooperative games in dynamic settings, considering both discrete-
time and continuous-time state transitions. Additionally, efficient reinforcement learning
(RL) algorithms and stochastic control techniques are proposed to identify strategies for
each player that lead to approximate Nash equilibria (NE).

The first part of this thesis introduces and analyzes a general class of dynamic N -player
non-cooperative games called α-potential games. In this framework, the change in a player’s
objective function resulting from a unilateral deviation from her strategy is equal to the
change in a common function, called the α-potential function, up to an error α. The existence
of an α-potential function simplifies the challenging task of finding α-Nash equilibria in
dynamic games to minimizing the α-potential function, as the optimizer of the α-potential
function is shown to be an α-Nash equilibrium of the game.

In Chapter 2, we focus on Markov games with finite state space, finite action space, and
Markovian policy. The state transition follows a discrete-time Markov decision process. In
this case, we establish the existence of an associated α-potential function. Additionally, we
provide a semi-infinite linear program to find α and its corresponding α-potential function
for any Markov game. We study two important classes of practically significant Markov
games, Markov congestion games and the perturbed Markov team games, via the framework
of Markov α-potential games, with explicit characterization of an upper bound for α and
its relation to game parameters. Furthermore, we study two equilibrium approximation
algorithms, namely the projected gradient-ascent algorithm and the sequential maximum
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improvement algorithm, along with their Nash regret analysis, and corroborate the results
with numerical experiments using model-free RL algorithms.

In Chapter 3, we study dynamic games with continuous-time state transitions, focusing
on general classes of states, actions, and controls/policies, with a particular emphasis on
stochastic differential games. An analytical characterization of the α-potential function is
established, with α represented in terms of the magnitude of the asymmetry of the second-
order derivatives of the players’ objective functions. For stochastic differential games in
which the state dynamic is a controlled diffusion, α is characterized in terms of the number
of players, the choice of admissible strategies, and the intensity of interactions and the level of
heterogeneity among players. Two classes of stochastic differential games, namely distributed
games and games with mean field interactions, are analyzed to highlight the dependence of α
on general game characteristics. To analyze the α-NE, the associated optimization problem
is embedded into a conditional McKean-Vlasov control problem. A verification theorem
is established to construct α-NE based on solutions to an infinite-dimensional Hamilton-
Jacobi-Bellman equation, which is reduced to a system of ordinary differential equations
for linear-quadratic (LQ) games. We conclude by case-studying an N -player LQ game on
a graph network, analyzing α under different graph structures, and deriving the explicit
solutions to the α-NE.

Since our framework reduces multi-agent games to a single optimization problem, the sec-
ond part of this thesis focuses on designing efficient algorithms for single-agent reinforce-
ment learning (RL). While much progress has been made in RL for discrete Markov decision
processes, continuous RL remains less explored. Therefore, in Chapter 4, we propose and
analyze two new policy learning methods: regularized policy gradient (RPG) and iterative
policy optimization (IPO), for a class of discounted linear-quadratic control (LQC) prob-
lems with continuous state space and continuous action space, over an infinite time horizon
with entropy regularization. Assuming access to the exact policy evaluation, both proposed
approaches are proved to converge linearly in finding optimal policies. Moreover, the IPO
method can achieve a super-linear convergence rate once it enters a local region around the
optimal policy. Finally, when the optimal policy for an RL problem in a known environment
is appropriately transferred as the initial policy to an RL problem in an unknown environ-
ment, the IPO method is shown to converge at a super-linear rate if the two environments
are sufficiently close. A model-free version of the policy-based methods is also discussed.
Performances of these proposed algorithms are supported by numerical examples.
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Chapter 1

Introduction

Game theory has framed our understanding of strategic interaction since the seminal work
of Von Neumann and Morgenstern [147] and the equilibrium concept of Nash [115]. Over the
decades, it has become a foundational analytical tool across a wide range of fields, including
economics [127, 7, 123], finance [143, 3, 35, 34, 70], transportation systems [159, 54, 83], and
evolutionary biology [79, 20, 42].

In parallel, reinforcement learning (RL) has emerged as a powerful data-driven framework
for sequential decision-making, particularly in settings where full information may not be
available [138, 92]. Many successful applications of RL such as autonomous driving, the game
of Go, and algorithmic trading, involve the interactions of multiple agents, which naturally
fall into the realm of multi-agent RL (MARL). While classical MARL methods have achieved
promising empirical results [104, 62, 162], the theoretical understanding of aspects such as
convergence, stability, and equilibrium properties remain relatively limited in the literature.

In general-sum or unstructured environments, learning dynamics may fail to converge,
show cyclic behaviors, or exhibit high sensitivity to parameter tuning [102, 109, 12]. There-
fore, theoretical studies are often conducted on more structured classes of games, such as
two-player zero-sum games [130], mean-field games and their variants [70, 4, 68, 5, 120], and
Markov potential games [101, 131, 106, 163, 114]. While these formulations offer theoretical
tractability, they may not fully capture the diversity of strategic interactions arising in more
complex or heterogeneous real-world environments.

The gap between the rapid advancement of MARL algorithms and the limitations of
existing game-theoretic frameworks motivates the central objective of this thesis. Specifically,
this thesis proposes a new framework called α-potential games that aims to strike a balance
between generality and tractability. This framework enables the analysis of general-sum
games while supporting gradient-based learning and guaranteeing equilibrium convergence
under suitable conditions. The remainder of this introduction first reviews the foundations
of static, Markov, and stochastic differential games, and then introduces α-potential games
in the context of recent theoretical and algorithmic advances.
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1.1 Static Games

Definition of Static Games. Static games, also known as one-shot simultaneous-move
or normal-form games, are among the most fundamental models in game theory. In these
games, a finite set of players each selects a strategy simultaneously and independently, and
each player’s payoff depends on the full profile of strategies chosen by all participants.

A game G is defined by a tuple (N, (Ai)i∈[N ], (ui)i∈[N ]), where N is the number of players
and [N ] = (1, 2, · · · , N) denotes the set of player indices. For each player i ∈ [N ], Ai
denotes the action space of player i. We denote the joint action profile of all players as
a := (a1, · · · , aN) ∈ A :=

∏
i∈[N ]Ai, and the joint action profile of all players except i as

a−i ∈ A−i :=
∏

j∈[N ],j ̸=iAj. The payoff function for player i is given by ui : A → R. Each

player i aims to maximize their own payoff ui (or equivalently, minimize a cost function ci,
defined by ci = −ui).

Nash equilibrium. The central solution concept in game theory is the Nash equilibrium
(NE). Intuitively, a Nash equilibrium is an action profile in which no player can unilaterally
improve their payoff by deviating from their current action. In this sense, it characterizes
a stationary point of the game where each player’s choice is optimal given the choices of
others. We now introduce the formal definition of a Nash equilibrium in both pure and
mixed strategies.

Definition 1.1.1. A pure strategy Nash equilibrium (NE) is a joint action profile a∗ =
(a∗1, . . . , a

∗
N) ∈ A such that for every player i ∈ [N ],

ui(a
∗
i , a

∗
−i) ≥ ui(ai, a

∗
−i) for all ai ∈ Ai.

When pure strategy equilibria do not exist or are not guaranteed, one may consider mixed
strategy Nash equilibria instead, where each player randomizes over their action space.

Definition 1.1.2. Let P(Ai) denote the set of probability distributions over Ai. A mixed
strategy profile σ∗ = (σ∗

1, . . . , σ
∗
N) ∈

∏
i∈[N ] P(Ai) is a Nash equilibrium if for every player

i ∈ [N ],
Ea∼σ∗ [ui(a)] ≥ Ea∼(σi,σ∗

−i)
[ui(a)] for all σi ∈ P(Ai),

where the expectation is taken over the joint distribution induced by the mixed strategies.

The classical result of Nash [115] guarantees the existence of at least one mixed strategy
Nash equilibrium in any static game with a finite number of players and finite action sets.
However, computing and analyzing Nash equilibria can be challenging, especially with high-
dimensional action spaces. In particular, Daskalakis et al. [46] shows that even for two-player
games, the problem of finding a Nash equilibrium is PPAD-complete (short for Polynomial
Parity Argument on Directed graphs), a complexity class of problems whose solutions are
guaranteed to exist but are hard to find. This suggests that, without further structure, no
polynomial-time algorithm is known for computing equilibria.
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1.1.1 Static Potential Games

The computational complexity barriers in finding NE motivate the study of structured classes
of games, where equilibria are not only guaranteed to exist but can also be efficiently learned
via decentralized dynamics.

A prominent example of a tractable class of N -player games is the class of potential
games, introduced by Monderer and Shapley [113]. The key feature of potential games is
that any unilateral deviation in a player’s payoff aligns exactly with the change in a common
scalar function, known as the potential function.

Definition 1.1.3. A static game is called a static potential game if there exists a function
ϕ : A→ R such that for all players i and for any ai, a

′
i ∈ Ai, a−i ∈ A−i, we have

ui(a
′
i, a−i)− ui(ai, a−i) = ϕ(a′i, a−i)− ϕ(ai, a−i).

The function ϕ is referred to as the (static) potential function.

Characterization of the potential function. Under sufficient regularity assumptions,
i.e., when each payoff function ui is twice continuously differentiable, ui ∈ C2, and each
action set Ai ⊆ R, the verification of whether a game is a potential game, as well as the
construction of a corresponding potential function if one exists, can be formulated in terms
of first- and second-order derivatives.

Theorem 1.1.1. [113, Theorem 4.5] Let G be a game in which ui ∈ C2 and Ai ⊆ R. Then
G is a potential game if and only if

∂2ui
∂ai∂aj

=
∂2uj
∂ai∂aj

, for every i, j ∈ [N ]. (1.1)

Moreover, if the payoff functions satisfy (1.1), let z = (z1, · · · , zN) be an arbitrary (but
fixed) action profile in

∏
i∈[N ]Ai, and let pi : [0, 1]×Ai 7→ Ai be a continuously differentiable

reparameterization of Ai such that for all ai ∈ Ai, pi(0, ai) = zi and pi(1, ai) = ai. Then a
potential function for G is given by

ϕ(a) =

∫ 1

0

N∑
i=1

(∂aiui)(p(r, a))∂rpi(r, ai)dr,

where p(r, a) := (pi(r, ai))i∈[N ].

Definitions 1.1.3 and 1.1.1 immediately imply that any local (player-wise) maximizer
(defined below) of ϕ is a pure strategy NE:

Proposition 1.1.1. Let G be a potential game with potential function ϕ. If ϕ has a local
(player-wise) maximum at a∗, namely

ϕ(a∗) ≥ ϕ(ai, a
∗
−i), for any ai ∈ Ai, i ∈ [N ],

then a∗ is an NE to G.
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As a result, it reduces the challenging task of finding NE to maximizing a single func-
tion. The structure of potential games ensures that various learning processes, such as best
response and fictitious play, are guaranteed to converge to NE [113, 112, 57, 124, 157].

1.1.2 Near-Potential Games

A key appeal of potential games is that many adaptive dynamics converge to a Nash equilib-
rium. This raises the question of whether such convergence extends to games that are close
to potential games. Candogan et al. [27] formalize the notion of near-potential games and
analyze the convergence behavior of various learning dynamics.

To quantify the distance between two static games Ĝ and G, Candogan et al. [27] proposes
the following measure of “closeness” between the games:

Definition 1.1.4 (Maximum pairwise difference). Let G and Ĝ be two games with N players,
set of action profiles A, and collections of payoff functions {ui}i∈[N ] and {ûi}i∈[N ] respectively.
The maximum pairwise difference (MPD) between these games is defined as

d(G, Ĝ) := max
ai,a

′
i∈Ai,

a−i∈A−i,i∈[N ]

|(ui (a′i, a−i)− ui (ai, a−i))− (ûi (a
′
i, a−i)− ûi (ai, a−i))| .

We now formulate the problem of finding the closest potential game to a given game in
terms of the maximum pairwise difference defined in Definition 1.1.4. Suppose we are given
a game G with payoff functions uii∈[N ]. We seek a potential game Ĝ with payoff functions
ûii ∈ [N ] and a potential function ϕ, such that the MPD from the original game is minimized.
This leads to the following optimization formulation:

min
ϕ,{ûi}i∈[N ]

max
ai,a

′
i∈Ai,

a−i∈A−i,i∈[N ]

|(ui(a′i, a−i)− ui(ai, a−i))− (ûi(a
′
i, a−i)− ûi(ai, a−i))|

subject to ϕ(a′i, a−i)− ϕ(ai, a−i) = ûi(a
′
i, a−i)− ûi(ai, a−i),

for all i ∈ [N ], ai, a
′
i ∈ Ai, a−i ∈ A−i.

(1.2)

The optimization problem mentioned above is convex with linear constraints and can be
reformulated as a linear program. Therefore, when the action space is finite, the closest
potential game can be computed efficiently in polynomial time.

The near-potential games preserve the key properties of potential games, where efficient
algorithms are shown to converge to the NE. Candogan et al. [25, 26] show that several
learning dynamics—such as best response, logit dynamics, and fictitious play—continue to
exhibit desirable convergence behavior in near-potential games. For example, for a game G
such that d(G, Ĝ) ≤ δ with Ĝ being a potential game, the trajectory of action profiles using
the best response converges to a bounded neighborhood of a Nash equilibrium, where the
size of the neighborhood depends on δ continuously.
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1.2 Dynamic Games

This section reviews the setup and key models in dynamic games, where players’ instanta-
neous payoffs depend on an underlying state transition process. We consider both discrete-
time and continuous-time state dynamics, with a focus on structured game classes that
exhibit potential-like properties. These properties, analogous to static potential games but
extended to dynamic settings, provide a foundation for our development of α-potential games,
a central contribution of this thesis.

Open-loop, closed-loop controls, and Markovian policies. We consider a stochastic
dynamic system defined on a complete probability space (Ω,F ,P), equipped with a filtration
(Ft)t≥0 that satisfies the usual conditions. This framework accommodates both discrete-
time Markov games, modeled via Markov decision processes (MDPs), and continuous-time
stochastic differential games, formulated through stochastic differential equations (SDEs).

Depending on the structure of available information, players may adopt different types
of control strategies. Let FW

t := σ(W j
s , s ≤ t, j ∈ [N ]) denote the filtration generated by the

exogenous noise (such as Brownian motions in SDE), and let FX
t := σ(Xj

s , s ≤ t, j ∈ [N ])
be the filtration generated by the state process. A strategy is said to be open-loop if the
control process is adapted to FW

t , i.e., the agent’s decision at time t can depend on the initial
condition and the noise history. In contrast, a strategy is closed-loop if it is adapted to FX

t ,
meaning that decisions can depend on the observed state trajectory [153]. A particularly
important subclass of closed-loop controls is feedback control, in which the decision at time
t depends only on the current state Xt, typically taking the form αi(t) = ϕi(t,Xt), where ϕi
is a measurable function [55]. Such a mapping ϕi is usually called a feedback policy.

In discrete-time settings such as Markov decision processes (MDPs) and Markov games,
Markovian policies constitute one of the most important classes of policies in the discrete-
time RL literature, due to their tractability and practical implementability. A Markovian
policy for player i is a mapping πi : S → P(Ai), where the action distribution at time k
depends only on the current state sk, rather than on the full history. That is, for all k,
πki (ai | s0, . . . , sk) = πi(ai | sk). The analogue of Markovian policies in the continuous-time
RL literature can be found in a recent line of work on relaxed control, which is used to model
exploration and exploitation in continuous-time reinforcement learning [148, 89, 90, 142, 69].

For an optimal control problem governed by an Itô-type SDE, it is well established that,
under appropriate regularity conditions, open-loop and closed-loop controls are equivalent in
the sense that they yield the same optimal value function, which coincides with the unique
viscosity solution to the associated Hamilton–Jacobi–Bellman (HJB) equation [153, 55, 154].
However, this equivalence may fail in general path-dependent control problems [153] or in
game-theoretic settings; see, for example, Carmona et al. [34] for an N -player systemic risk
problem and Sun and Yong [132] for a two-player zero-sum linear-quadratic game. In an N -
player game, a closed-loop control of the form ϕi(t,X

1
t , . . . , X

N
t ) introduces interdependence

between the players: if player j adjusts her strategy ϕj, this affects her state dynamics
Xj
t , which in turn influences player i’s control through its dependence on the full state
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vector. In contrast, under open-loop control, where strategies are adapted to the underlying
Brownian motions, such interdependence is absent. Therefore, in the context of N -player
games, the open-loop and closed-loop control strategies will lead to different equilibrium
characterizations. In Chapter 3 of this thesis, we investigate and quantify the impact of
control structures on the game dynamics and the equilibrium outcomes.

1.2.1 Discrete-Time Markov Games

For discrete-time dynamic games, we focus on Markov games, a foundational class of games
where both state transitions and players’ payoffs depend only on the current state and joint
actions, rather than the full history of play. Markov games serve as the primary framework for
multi-agent reinforcement learning (MARL) algorithms. Methods such as Nash Q-learning
[85] and policy gradient approaches [104] leverage the Markov structure to enable scalable
learning in dynamic environments.

We consider a Markov game defined by the tuple G = ⟨N,S, (Ai)i∈[N ], (ui)i∈[N ], P, γ⟩,
where N is the number of players, S is a finite state space, Ai is the finite action set of
player i, and ui : S × A → R is the one-stage payoff function. The state transition kernel
P (s′ | s, a) determines the probability of moving from state s to s′ under joint action a, and
γ ∈ [0, 1) is the discount factor.

At each time step k, the system is in state sk ∈ S, each player i selects an action aki ∼
πi(· | sk), and the joint action ak = (aki )i∈[N ] determines the next state sk+1 ∼ P (· | sk, ak).
The players follow stationary Markov policies, with πi : S → P(Ai) ∈ Πi, and the joint
policy is denoted by π = (πi)i∈[N ] ∈ Π =

∏
i∈[N ] Πi. Each player i wants to maximize her

expected discounted return (value function), which is defined as

Vi(s, π) := Eπ

[
∞∑
k=0

γkui(s
k, ak) | s0 = s

]
,

under policy π and initial state s, and Vi(µ, π) := Es∼µ[Vi(s, π)] when the initial state is
drawn from distribution µ ∈ P(S).

Markov Potential Games. Leonardos et al. [101] introduces a direct extension of static
potential games to dynamic settings, called Markov potential game (MPG), by assuming the
existence of a potential function that globally characterizes unilateral deviations in agents’
value functions.

Definition 1.2.1. A Markov game is called a Markov potential game if there exists a function
Φ : S × Π→R such that for any s ∈ S, i ∈ [N ], πi, π

′
i ∈ Πi, π−i ∈ Π−i,

Vi(s, πi, π−i)− Vi(s, π
′
i, π−i) = Φ(s, πi, π−i)− Φ(s, π′

i, π−i). (1.3)

The MPG structure has enabled learning algorithms with convergence guarantees to NE,
including policy gradient-based methods [101, 49, 56, 136, 163, 164] and best-response-based
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methods [106]. However, two main challenges remain: (1) the lack of real-world examples
that can be provably shown to be MPGs, and games where each state corresponds to a static
potential game may fail to be MPGs (see examples provided in Leonardos et al. [101]); and
(2) the difficulty of certifying games as MPGs and constructing potential functions, except
in special cases (e.g., state-independent transitions or identical payoffs [114, 101]).

Our solution: Markov α-Potential Games. In Chapter 2, we propose a framework
called Markov α-potential games that extends the notion of potential structure. Markov α-
potential games allow misalignment between incentive differences in the value functions and
those in a common function called the α-potential function. This misalignment is measured
through the notion of maximum pairwise distance between a Markov game and a real-valued
function defined on S × Π:

Definition 1.2.2. Given any Markov game G and a function Ψ : S × Π→R, the maximum
pairwise distance d̂ between Ψ and G is defined as

d̂(Ψ,G) := sup
s∈S,i∈[N ],

πi,π
′
i∈Πi,π−i∈Π−i

∣∣∣Ψ(s, π′
i, π−i)−Ψ(s, πi, π−i)− (Vi (s, π

′
i, π−i)− Vi (s, πi, π−i))

∣∣∣.
Let FG be a suitable class of bounded uniformly equi-continuous function. The precise

definition is deferred to Chapter 2. We then define Markov α-potential games:

Definition 1.2.3 (Markov α-potential games). A Markov game G is a Markov α-potential
game if

α = inf
Ψ∈FG

d̂(Ψ,G).

Furthermore, any Φ ∈ FG such that d̂(Φ,G) = α is called an α-potential function of G.

Next, we present a useful property due to Definition 1.2.3.

Corollary 1.2.1. Let G be a Markov α-potential game with α-potential function Φ. Then,
for any s ∈ S, i ∈ [N ], πi, π

′
i ∈ Πi, π−i ∈ Π−i,

|Vi(s, πi, π−i)− Vi(s, π
′
i, π−i)− (Φ(s, πi, π−i)− Φ(s, π′

i, π−i))| ≤ α.

Corollary 1.2.1 shows that, compared to MPGs, Markov α-potential games allow for a
misalignment between Vi and Φ of at most α. In other words, the α-potential function Φ
approximately captures the change in player incentives when they unilaterally deviate, with
an error bounded by α. For any given game, upon identifying its α-potential function and the
corresponding α, we can conclude that any optimizer of Φ induces an α-Nash equilibrium.
In Chapter 3, we prove the existence of the α-potential function. Moreover, similar to
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Section 1.1.2, the value of α and the corresponding α-potential function can be obtained by
formulating the problem as an optimization problem:

min
y∈R

ϕ:S×A→R

y

s.t.
∣∣∣∑
s′,a′

(ds(s′, a′; πi, π−i)− ds(s′, a′; π′
i, π−i)) · (ϕ− ui)(s

′, a′)
∣∣∣ ≤ y,

∀s ∈ S, ∀i ∈ [N ], ∀πi, π′
i ∈ Πi, ∀π−i ∈ Π−i,

|ϕ(s, a)| ≤ N max
i∈[N ]

∥ui∥∞, ∀s ∈ S, a ∈ A.

(1.4)

where ds(s′, a′; π) is the occupation measure, defined as

ds(s′, a′; π) := π(a′|s′)Eπ

[
∞∑
k=0

γk1(sk = s′)
∣∣∣s0 = s

]
.

Compared to (1.2), which has finitely many constraints and can be reformulated as a linear
program, (1.4) features infinitely many constraints defined over the policy space. Therefore,
(1.4) is a semi-infinite linear program. Several algorithmic methods have been developed to
solve such problems [141, 82].

In Chapter 2, we present two algorithms, one based on the policy-gradient method and
the other on the best-response method, to find approximate Nash equilibria for Markov
α-potential games. The resulting Nash regret explicitly depends on α.

1.2.2 Continuous-Time Stochastic Differential Games

Continuous-time games model systems where strategies and states evolve continuously. These
games are especially relevant in control-theoretic contexts such as differential games, and
have a wide application in financial modeling [77, 69, 70], trajectory planning [134, 135], and
autonomous systems [104, 103].

Consider an N -player stochastic game G over the time horizon [0, T ], defined on a com-
plete probability space (Ω,F ,P) with an m-dimensional Brownian motion W = (W k)mk=1.
For each player i ∈ [N ], let Ai be the set of admissible controls ui taking values in Ai ⊆ Rn.
Denote the joint control by u = (u1, . . . , uN) ∈ A(N) =

∏
i∈[N ] Ai, and let Xu = (Xu

i )
N
i=1 be

the associated state process satisfying, for all i ∈ [N ],

dXt,i = bi(t,Xt,u t)dt+ σi(t,Xt,u t)dWt, X0,i = xi,

where xi ∈ Rd, bi : [0, T ] × RNd × RNn → Rd, and σi : [0, T ] × RNd × RNn → Rd×m are
measurable. The objective of player i is to minimize the cost functional

Vi(u) = E
[∫ T

0

fi(t,X
u
t ,u t)dt+ gi(X

u
T )

]
,

where fi : [0, T ]× RNd × RNn → R and gi : RNd → R are measurable.
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Tractable stochastic differential games. One classical approach is through mean-field
games (MFG), which simplify large-population stochastic differential games by assuming
homogeneity among agents and taking the limit as the number of players N→∞. This
framework reduces the problem to a representative agent coupled with a distributional flow,
typically characterized by a system of Hamilton–Jacobi–Bellman and Fokker–Planck equa-
tions [100, 87]. Another line of work studies graphon games, which model heterogeneous
interactions between agents through weighted graphs or graphons. These methods analyze
the limit behavior of games with complex network structures as N→∞ [9, 23, 15, 52, 36].
For some more recent works with sparse graph and finite players, we refer to [96, 86].

α-potential games. Guo and Zhang [66] study potential games within the framework
of stochastic differential games, focusing on closed-loop controls in feedback form. They
provide two characterizations of continuous-time potential games: a probabilistic character-
ization and a PDE characterization. Moreover, Guo and Zhang [66] establish an analogous
characterization of the potential function Φ, comparable to the static potential function
characterization in Theorem 1.1.1, by employing linear derivatives:

Definition 1.2.4. Let A(N) =
∏

i∈[N ] Ai be a convex set and f : A(N) → R. For each i ∈ [N ],

we say f has a linear derivative with respect to Ai, if there exists
δf
δai

: A(N)×span (Ai) → R,
such that for all a = (ai, a−i) ∈ A(N), δf

δai
(a; ·) is linear and

lim
ε↘0

f ((ai + ε (a′i − ai) , a−i))− f(a)

ε
=
δf

δai
(a; a′i − ai) , ∀a′i ∈ Ai.

Linear differentiability, as defined in Definition 1.2.4, is weaker than Fréchet or Gâteaux
differentiability because it avoids imposing a topology on the strategy classes Ai. This
provides greater flexibility in handling different types of control classes.

In Chapter 3, we extend Guo and Zhang [66] to propose α-potential games in stochastic
differential game settings.

Definition 1.2.5 (Guo et al. [74]). We call a game an α-potential game, if there exists α ≥ 0

and Φ : A(N) → R such that for all i ∈ [N ], ai, a
′
i ∈ Ai and a−i ∈ A(N)

−i ,

|Vi ((a′i, a−i))− Vi ((ai, a−i))− (Φ ((a′i, a−i))− Φ ((ai, a−i))) | ≤ α,

with A(N) =
∏

i∈[N ] Ai the set of strategy profiles for all players, and A(N)
−i =

∏
j∈[N ]\{i}Aj

the set of strategy profiles of all players except player i.

Such Φ is called an α-potential function for the game G. In the case of α = 0, we simply
call the game G a potential game and Φ a potential function for G.
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Theorem 1.2.1. If the objective functions {Vi}i∈[N ] of a game G admit second-order linear
derivatives, then under some mild regularity conditions, for any fixed z ∈ A(N), the function

Φ(a) :=

∫ 1

0

N∑
j=1

δVj
δaj

(z+ r(a− z); aj − zj) dr

is an α-potential function of G, with

α ≤ 2 sup
i∈[N ],a′i∈Ai,a,a′′∈A(N)

N∑
j=1

∣∣∣∣ δ2Viδaiδaj

(
a; a′i, a

′′
j

)
− δ2Vj
δajδai

(
a; a′′j , a

′
i

)∣∣∣∣ .
This characterization generalizes existing results of potential games with finite-dimensional

strategy classes [113, 101, 84] to general dynamic games with arbitrary convex strategy
classes. In particular, it replaces the Fréchet derivatives used in earlier works with linear
derivatives, without requiring a topological structure on A(N). Moreover, it quantifies the
performance of the α-potential function (3.2) in terms of the difference between the second-
order linear derivatives of the objective functions.

We characterize games under both open-loop and closed-loop control structures and iden-
tify the corresponding value of α. Notably, due to the interdependence introduced by closed-
loop control, the α values for open-loop games are usually smaller than those for the cor-
responding closed-loop games. We illustrate this in Chapter 3 through several examples,
including network games, distributed games, and games with mean-field interactions.

With the α-potential function defined in Theorem 1.2.1, we can find an NE by minimizing
the α-potential function, a∗ = infa Φ(a), which can be written as an equivalent conditional
McKean-Vlasov problem. In an open-loop linear-quadratic setting, it can be solved explicitly
by solving a set of ODEs.

Learning in α-potential games. In Chapter 2, we present two RL algorithms to learn
the NE in discrete-time Markov α-potential games, demonstrating their effectiveness through
model-free numerical examples. Learning in continuous-time α-potential games is more so-
phisticated than in discrete-time games, and designing efficient RL algorithms for continuous-
time games remains an open and challenging problem.

Since α-potential games reduce the task of finding a Nash equilibrium to solving a mini-
mization problem, a natural starting point is to draw inspiration from single-agent continuous
RL methods. As a preliminary step, we consider a linear-quadratic control problem in Chap-
ter 4, and study the convergence rate of policy gradient based and policy optimization based
methods in this setting. Several continuous-time RL methods have been proposed in recent
literature, including [148, 89, 90]. However, it remains an open and interesting question
how to effectively integrate RL methods to establish efficient algorithms with convergence
guarantees for continuous-time α-potential games.
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Chapter 2

Markov α-Potential Games

2.1 Introduction

Designing non-cooperative multi-agent systems interacting within a shared dynamic environ-
ment is a central challenge in many existing and emerging autonomy applications, including
autonomous driving, smart grid management, and e-commerce. Markov game, proposed in
[129], provide a mathematical framework for studying such interactions [162]. A primary
objective in these systems is for agents to reach a Nash equilibrium, where no agent benefits
from changing its strategy unilaterally. However, designing algorithms for approximating
or computing Nash equilibrium is generally intractable [117], unless certain structure of
underlying multi-agent interactions are exploited. There is a rich line of literature on equi-
librium computation and approximation algorithms for Nash equilibrium in Markov zero-
sum games (see [125] and references therein), Markov team games (see [14] and references
therein), symmetric Markov games (see [156]), and in particular, Markov potential games
(see [106, 163, 101, 114] and references therein) and its generalization to weakly acyclic games
(see [6, 155] and references therein).

In this paper, we propose the Markov α-potential game framework, where changes in
an agent’s long-run utility from unilateral policy deviations are captured by an “α-potential
function” and a parameter α (Definition 2.2.4). We establish that any finite-state, finite-
action Markov game is a Markov α-potential game for some α ≥ 0, and there exists an
α-potential function (Theorem 2.2.1). Furthermore, we show that any optimizer of an α-
potential function, if it exists, is an α-stationary Nash equilibrium (Proposition 2.2.1).

Markov α-potential games generalize the framework of Markov potential games (MPGs).
MPGs, originally proposed in [105] and [101], correspond to the special case of α = 0 and
extend a rich body of literature on static potential games (or static congestion games) [113].
The MPG structure has enabled learning algorithms with convergence guarantees to Nash
equilibrium (e.g., [106, 49]). However, two main challenges remain: (1) the lack of real-world

1This chapter is mainly based on work [71] entitled Markov α-Potential Games, coauthored with Xin
Guo, Chinmay Maheshwari, Shankar Sastry, and Manxi Wu from UC Berkeley.
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examples that can be provably shown to be MPGs, and (2) the difficulty of certifying games as
MPGs and constructing potential functions, except in special cases (e.g., state-independent
transitions or identical payoffs [114, 101]). Our α-potential game framework addresses both
challenges: it shows that any finite-state, finite-action Markov game is a Markov α-potential
game and provides a semi-infinite linear programming approach to certify MPGs (Section
2.4).

Our Markov α-potential games framework extends the static near-potential games, pro-
posed in [27, 24], to Markov games. Unlike static games, where the nearest potential function
always exists, the existence of an α-potential function requires additional analysis (Theo-
rem 2.2.1). Moreover, while finding the nearest static potential function involves finite-
dimensional linear programming, computing the α and its potential function requires solv-
ing a semi-infinite linear programming problem, as the α-potential function spans both state
and policy spaces, the latter being uncountable. We derive explicit upper bounds on the
parameter α for two classes of relevant games. First, we consider Markov congestion games
(MCGs), where each stage game is a congestion game (proposed in [121]) and the state tran-
sition depends on agents’ aggregate resource utilization. This is equivalent to Markov games
where each stage is a static potential game, as static congestion games and static potential
games are equivalent [113]. This class of games models applications like dynamic routing,
communication networks, and robotic interactions [45, 134, 135, 94]. We show that the up-
per bound on α for MCGs scales linearly with the state and resource set sizes, and inversely
with the number of agents (Proposition 2.3.2). Second, we consider perturbed Markov team
games (PMTGs), which generalize Markov team games by allowing utility deviations from
the team objective. We provide an upper bound for PMTGs that scales with the magnitude
of these deviations (Proposition 2.3.3). For both MCGs and PMTGs, we calculate an up-
per bound on α by using a specific candidate α-potential function to compute an analytical
upper bound on α. However, this upper bound can be loose. In such cases, the semi-infinite
linear programming method described in Section 2.4 can be used to obtain tighter numerical
estimates of α.

We propose two algorithms to approximate stationary Nash equilibrium in Markov α-
potential games. We study the Nash-regret of both algorithms and characterize its de-
pendence on α (Theorems 2.5.1 and 2.5.2). First, we analyze the projected gradient-ascent
algorithm (Algorithm 2), originally proposed in [49] for MPGs, in the context of Markov
α-potential games by bounding the path length of policy updates using changes in the α-
potential function and α. Following our proof technique, the analysis of many existing
algorithms for MPGs can be extended similarly to Markov α-potential games. Second, we
propose a new algorithm called the sequential maximum improvement algorithm (Algorithm
3) and derive its Nash-regret. The main technical novelty in the analysis is to bound the
maximum improvement of a “smoothed” Q-functions with respect to change in policies (aka
“path length of policies”), which in turn is bounded by cumulative change in α-potential
function (Lemma 2.5.5). For α = 0, this algorithm and its analysis are independently relevant
to MPGs. We numerically validate these algorithms on examples of MCGs and PMTGs.
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2.1.1 Additional Related Works

Our work on Markov α-potential games is related to the literature on weakly acyclic Markov
games, proposed in [6]. Weakly acyclic Markov games extend weakly acyclic static games to
Markov games, encompassing MPGs as a special case. Unlike MPGs, weakly acyclic Markov
games do not require the existence of an exact potential function, instead retain many
key properties of potential games, such as the existence of pure equilibria and finite strict
best-response paths. Just as MPGs, most games are not weakly acyclic, and determining
whether a game is weakly acyclic remains an open problem. On one hand, the introduction of
a Markov α-potential games allows for design and analysis of algorithms as a game diverges
from a MPG. On the other hand, if a game is weakly acyclic, it is an α-potential game with
the value of α not necessarily zero. Exploring the connection between these two approaches
and how they might be used together to analyze general Markov games is an interesting and
open direction for future research.

Our Algorithm 2 for Markov α-potential games is connected with a substantial body of
work on learning approximate Nash equilibria (NEs) in MPGs (see [106, 49, 108, 131, 56,
136, 165]). The first global convergence result for the policy gradient method in MPGs was
established in [101]. Additionally, these algorithms have been studied in both discounted in-
finite horizon settings [49, 56] and finite horizon episodic settings [108, 131]. Other methods,
such as natural policy gradient [56, 136, 165] and best-response based methods [106], have
also been explored.

Our Algorithm 3 is reminiscent of the “Nash-CA” algorithm developed for MPGs in
[131], which requires each player to sequentially compute the best response policy using an
RL algorithm in each iteration; in contrast, our algorithm only computes a smoothed one-step
optimal deviation. One-step optimal deviation based algorithms has also been studied for
MPGs [106, 38]. Additionally, incorporating smoothness for better performance in Markov
games is also studied in [39, 51, 111].

Finally, a recent work [45] introduces an approximation algorithm for MCGs and inves-
tigates the Nash-regret. Their results and approach are tailored exclusively for congestion
games, whereas our work focuses on a broader framework of Markov α-potential games.

2.1.2 Notations

For any n ∈ N, [n] := {1, 2, 3, ..., n}. For a finite set X, P(X) denotes the set of probabil-
ity distributions over X. For any function f : X→R, the L∞-norm is defined by ∥f∥∞ =
maxx∈X |f(x)|, the L1-norm is ∥f∥1 =

∑
x∈X |f(x)|, and the L2-norm is ∥f∥ =

√∑
x∈X |f(x)|2.
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2.2 Framework of Markov α-Potential Games

2.2.1 Setup: Markov Games

Consider a Markov game G as characterized by the tuple ⟨N,S, (Ai)i∈[N ], (ui)i∈[N ], P, γ⟩,
where N is the number of players, S is the finite set of states, Ai is the finite set of actions
of player i ∈ [N ] and A := ×i∈[N ]Ai is the set of joint actions of all players, ui : S × A → R
is the one-stage payoff function of player i ∈ [N ], P = (P (s′|s, a))s,s′∈S,a∈A is the probability
transition kernel such that P (s′|s, a) is the probability of transitioning to state s′ ∈ S given
the current state s ∈ S and action profile a ∈ A, and γ ∈ [0, 1) is the discount factor.

The game proceeds in discrete time steps. At each time step k = 0, 1, 2, · · · , the state
of the game is sk ∈ S, the action taken by player i ∈ [N ] is aki ∈ Ai, and the joint action
of all players is ak = (aki )i∈[N ] ∈ A. Once players select their actions, each player i ∈ [N ]
observes her one-stage payoff ui(s

k, ak) ∈ R, and the system transits to state sk+1, where
sk+1 ∼ P (·|sk, ak). In this study, we assume that the action taken by any player is based on a
randomized stationary Markov policy, as in the Markov games literature [47, 101, 49]. That
is, for any player i ∈ [N ], the action selected at time step k is aki ∼ πi(·|sk), and the joint
policy of all players is π = (πi)i∈[N ] ∈ Π := ×i∈[N ]Πi, with Πi := {πi : S → P(Ai)}. The joint
policy of all players except player i is denoted as π−i = (πj)j∈[N ]\{i} ∈ Π−i := ×j∈[N ]\{i}Πj.
Given π ∈ Π, the probability of the system transiting from s to s′ is denoted as P π(s′|s) :=
Ea∼π[P (s′|s, a)].

Each player i aims to maximize the accumulated reward (a.k.a. the utility function),
given the initial state s ∈ S and the joint policy π ∈ Π,

Vi(s, π) := Eπ

[
∞∑
k=0

γkui
(
sk, ak

)
| s0 = s

]
, (2.1)

where γ ∈ [0, 1) is the discount factor, ak ∼ π
(
·|sk
)
, and sk+1 ∼ P

(
·|sk, ak

)
. Denote also

Vi(µ, π) := Es∼µ[Vi(s, π)], if the initial state follows a distribution µ ∈ P(S). Additionally,
define the discounted state visitation distribution as dπµ(s) := (1− γ)

∑∞
t=0 γ

kP (sk = s|s0 ∼
µ). To analyze this game, we adopt the solution concept of ϵ-stationary Nash equilibrium
(NE).

Definition 2.2.1. (ϵ-stationary Nash equilibrium). For any ϵ ≥ 0, a policy profile π∗ =
(π∗

i , π
∗
−i) is an ϵ-stationary Nash equilibrium of the Markov game G if for any i ∈ [N ], any

πi ∈ Πi, and any µ ∈ P(S), Vi(µ, π
∗
i , π

∗
−i) ≥ Vi(µ, πi, π

∗
−i)− ϵ.

When ϵ = 0, it is simply called a stationary NE, which always exists in our setup [57].

2.2.2 Markov α-Potential Games

In this section, we introduce the framework of Markov α-potential games. We show that any
Markov game can be analyzed under this framework. First, we introduce some preliminaries.
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We define a metric d on Π as follows: for any π, π̃ ∈ Π,

di (πi, π̃i) := max
s∈S,ai∈Ai

|πi (ai | s)− π̃i (ai | s)| , ∀i ∈ [N ],

d(π, π̃) :=max
i∈[N ]

di (πi, π̃i) . (2.2)

Evidently, the sets of policies {Πi}i∈[N ] are compact in the topology induced by the metrics
{di}i∈[N ], Π is compact in the topology induced by d, and the utility functions are continuous
with respect to π under the metric d [156]. Next, we introduce the notion of maximum
pairwise distance between a Markov game and a real-valued function defined on S × Π.

Definition 2.2.2. (Maximum pairwise distance). Given any Markov game G and a function

Ψ : S × Π→R, the maximum pairwise distance d̂ between Ψ and G is defined as

d̂(Ψ,G) := sup
s∈S,i∈[N ],

πi,π
′
i∈Πi,π−i∈Π−i

∣∣∣Ψ(s, π′
i, π−i)−Ψ(s, πi, π−i)− (Vi (s, π

′
i, π−i)− Vi (s, πi, π−i))

∣∣∣.
Definition 2.2.2 generalizes the concept of maximum pairwise distance from [27, Definition

2.3], extending it from static games (action profiles) to Markov games, where the distance
is measured over policies that map states to action distributions. Next, we introduce the
notion of a game elasticity parameter, which is useful for defining Markov α-potential games.
Intuitively, this parameter captures the smallest value of the maximum pairwise distance
between any function in a set FG (to be defined shortly) and G.

Definition 2.2.3. (Game elasticity parameter). Given any game G, its game elasticity
parameter α is defined as

α := inf
Ψ∈FG

d̂(Ψ,G), (2.3)

where FG := {Ψ : S × Π → R s.t. ∥Ψ∥∞ ≤ 2N
1−γ maxi∈[N ] ∥ui∥∞} is a class of bounded

uniformly equi-continuous function on Π. 1

Our choice of the specific value of the upper bound on functions in FG is useful for the
proof of Proposition 4.1.

Clearly α <∞ as one can take Ψ = 0 in (2.3) to ensure α ≤ 2∥Vi∥∞<∞.
Furthermore, the game elasticity parameter depends on variety of game parameters,

including the number of players, the action and state sets, the utility function values, the
Markov state transition dynamics, and the discount factor.

Next, we define Markov α-potential games.

1A set F of functions f : S×Π→R is called uniformly equi-continuous on Π, if there exists δF : R+ → R+

such that for every ϵ > 0, |f(s, π)− f(s, π′)| ≤ ϵ for all f ∈ F , s ∈ S, π, π′ ∈ Π such that d(π, π′) ≤ δF (ϵ).
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Definition 2.2.4. (Markov α-potential game). A Markov game G is a Markov α-potential

game if α is the game elasticity parameter. Furthermore, any Φ ∈ FG such that d̂(Φ,G) = α
is called an α-potential function of G.

Next, we present a useful property due to Definition 2.2.4.

Corollary 2.2.1. Let G be a Markov α-potential game with α-potential function Φ. Then,
for any s ∈ S, i ∈ [N ], πi, π

′
i ∈ Πi, π−i ∈ Π−i,

|Vi(s, πi, π−i)− Vi(s, π
′
i, π−i)− (Φ(s, πi, π−i)− Φ(s, π′

i, π−i))| ≤ α. (2.4)

Next, we show the existence of an α-potential function.

Theorem 2.2.1. (Existence of α-potential function). For any Markov game G, there exists

Φ ∈ FG such that d̂(Φ,G) = infΨ∈FG d̂(Ψ,G).

Proof. Define a mapping FG × Π × Π ∋ (Ψ, π, π′) 7→ h(Ψ, π, π′) := max
s∈S,i∈[N ]

∣∣Ψ(s, π′
i, π−i) −

Ψ(s, πi, π−i) − (Vi (s, π
′
i, π−i)− Vi (s, πi, π−i))

∣∣ ∈ R. Note that such h is continuous under
the standard topology induced by sup-norm on FG × Π × Π. By Berge’s maximum theo-
rem, g(Ψ) := maxπ,π′∈Πh(Ψ, π, π

′) is continuous with respect to Ψ. Since FG is uniformly
bounded and uniformly equi-continuous, the Arzelà–Ascoli theorem implies that FG is rela-
tively compact in CΠ, where CΠ := {f : S×Π → R | ∀s ∈ S, f(s, ·) is a continuous function}
[122]. Finally, by the extreme-value theorem [122], there exists a function Φ ∈ FG such that

d̂(Φ,G) = infΨ∈FG d̂(Ψ,G).

Corollary 2.2.1 and Theorem 2.2.1 jointly show that for any Markov game G, an α-
potential function exists such that the gap between the change in the utility function of any
agent due to a unilateral change in its policy and the change in α-potential function is at
most α. Next, we show that any optimizer of the α-potential function with respect to policy
π yields an α-Nash equilibrium (NE) of game G.

Proposition 2.2.1. Given a Markov α-potential game G with an α-potential function Φ, for
any ϵ > 0, if there exists a π∗ ∈ Π such that for every s ∈ S, Φ(s, π∗) + ϵ ≥ supπ∈Π Φ(s, π),
then π∗ ∈ Π is an (α + ϵ)-stationary NE of G.

Remark 2.2.1. Note that Proposition 2.2.1 holds for any function Ψ∈ FG that yields an
upper bound for α. That is, given a Markov α-potential game G and a function Ψ satisfying

|Vi(s, πi, π−i)− Vi(s, π
′
i, π−i)− (Ψ(s, πi, π−i)−Ψ(s, π′

i, π−i))| ≤ ᾱ,

∀s ∈ S, πi, π
′
i ∈ Πi, π−i ∈ Π−i,

for some ᾱ ∈ [α,∞), then for any π∗ ∈ Π such that for every s ∈ S, Ψ(s, π∗) + ϵ ≥
supπ∈Π Ψ(s, π), π∗ is an (ᾱ + ϵ)-stationary NE of G.
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2.3 Examples of Markov α-Potential Games

In this section, we present three important classes of games, Markov potential games, Markov
congestion games, and perturbed Markov team games, which can be analyzed through the
framework of Markov α-potential games.

2.3.1 Markov Potential Game

A game is a Markov potential game if there exists an auxiliary function (a.k.a. potential
function) such that when a player unilaterally deviates from her policy, the change of the
potential function is equal to the change of her utility function.

Definition 2.3.1 (Markov potential games [101]). A Markov game G is a Markov potential
game (MPG) if there exists a potential function Φ : S × Π→R such that for any i ∈ [N ],
s ∈ S, πi, π

′
i ∈ Πi, and π−i ∈ Π−i, Φ(s, π

′
i, π−i)− Φ(s, πi, π−i) = Vi(s, π

′
i, π−i)− Vi(s, πi, π−i).

Proposition 2.3.1. An MPG is a Markov α-potential game with α = 0.

2.3.2 Markov Congestion Game

The Markov congestion game (MCG) Gmcg is a dynamic counterpart to the static congestion
game introduced by [113], involving a finite number of players using a finite set of resources.
Each stage of Gmcg is a static congestion game with a state-dependent reward function for
each resource, and the state transition depends on the aggregated usage of each resource by
the players. Specifically, let the finite set of resources in the one-stage congestion game be
denoted as E. The action ai ∈ Ai ⊆ 2E of each player i ∈ [N ] represents the set of resources
chosen by player i. Here, the action set Ai is the set of all resource combinations that are
feasible for player i. The total usage demand of all players is 1, and each player’s demand is
assumed to be 1/N .

Given an action profile a = (ai)i∈[N ], the aggregated usage demand of each resource e ∈ E
is given by

we(a) =
1

N

∑
i∈[N ]

1(e ∈ ai). (2.5)

In each state s, the reward for using resource e is denoted as (1/N) · ce(s, we(a)). Thus, the
one-stage payoff for player i ∈ [N ] in state s ∈ S, given the joint action profile a ∈ A, is
ui(s, a) = (1/N) ·

∑
e∈ai ce(s, we(a)). The state transition probability, denoted as P (s′|s, w),

depends on the aggregate usage vector w = (we)e∈E, which is induced by the players’ action
profile as in (2.5). The set of all feasible aggregate usage demands is denoted by W .

The next proposition shows that, under a regularity condition on the state transition
probability, Gmcg is a Markov α-potential game such that the upper bound of α scales linearly
with respect to the Lipschitz constant ζ, the size of state space |S|, resource set |E|, and
decreases as N increases.
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Proposition 2.3.2. If there exists some ζ > 0 such that for any s, s′ ∈ S,w,w′ ∈ W,
|P (s′|s, w)−P (s′|s, w′)| ≤ ζ∥w−w′∥1, then the congestion game Gmcg is a Markov α-potential
game with α ≤ 2ζγ|S||E| sups,π Ψ(s, π)/(N(1− γ)), where

Ψ(µ, π) :=
1

N
Eµ,π

[
∞∑
k=0

γk
(∑

e∈E

wk
eN∑
j=1

ce

(
sk,

j

N

))]
, (2.6)

such that s0 ∼ µ, the aggregate usage vector wk = (wke )e∈E is induced by ak ∼ π(sk), and
sk ∼ P (·|sk−1, wk−1).

2.3.3 Perturbed Markov Team Game

AMarkov game is called a perturbed Markov team game (PMTG) Gpmtg if the payoff function
for each player i ∈ [N ] can be decomposed as ui(s, a) = r(s, a) + ξi(s, a). Here, r(s, a)
represents the common interest of the team, and ξi(s, a) represents player i’s heterogeneous
preference, such that ∥ξi∥L∞ ≤ κ, where κ ≥ 0 measures each player’s deviation from the
team’s common interest. As κ→ 0, Gpmtg becomes a Markov team game, which is an MPG
[101].

The next proposition shows that a Gpmtg is a Markov α-potential game, and the upper
bound of α decreases as the magnitude of the payoff perturbation κ decreases.

Proposition 2.3.3. A perturbed Markov team game Gpmtg is a Markov α-potential game
with α ≤ 2κ

(1−γ)2 .

2.4 Finding an Upper Bound of α

The analysis of MCG and PMTG in Section 2.3 utilizes a specific form of the Markov α-
potential function to obtain an upper bound on α. In this section, we provide an optimization-
based procedure to find an upper bound on α by also computing the α-potential function.

Our approach is based on changing the feasible set of the optimization problem in (2.3)
to F̃G, defined as follows:

F̃G :=

{
Ψ(s, π) =

∑
s′∈S,a′∈A

ds(s′, a′; π)ϕ(s′, a′),∀s ∈ S, π ∈ Π

∣∣∣∣ϕ : S × A→ R

s.t. ∥ϕ∥∞ ≤ N max
i∈[N ]

∥ui∥∞

}
, (2.7)

where, for any s ∈ S, ds(·; π) : S × A → R is the state-action occupancy measure induced
due to π, defined as follows:

ds(s′, a′; π) := π(a′|s′)Eπ

[
∞∑
k=0

γk1(sk = s′)
∣∣∣s0 = s

]
,
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where ak ∼ π
(
sk
)
, and sk+1 ∼ P

(
·|sk, ak

)
. Intuitively, for any Ψ ∈ F̃G, there exists

ϕ : S × A → R such that Ψ(s, π) represents the long-horizon discounted value of a Markov
decision process with state transition P , starting from state s, using policy π ∈ Π, and
one-step utility ϕ.

Proposition 2.4.1. For any Markov α-potential game G, F̃G ⊆ FG. That is, ᾱ ≥ α with

ᾱ := inf
Ψ∈F̃G

d̂(Ψ,G). (2.8)

Using Remark 2.2.1, we can conclude that any optimizer of Ψ, where d̂(Ψ,G) = ᾱ, can
be used to find a ᾱ-stationary NE for the game G.

Next, we provide an optimization based method to compute ᾱ. Note that (2.8) can be
reformulated as follows:

min
y∈R

ϕ:S×A→R

y (2.9)

s.t.
∣∣∣∑
s′,a′

(ds(s′, a′; πi, π−i)− ds(s′, a′; π′
i, π−i)) · (ϕ− ui)(s

′, a′)
∣∣∣ ≤ y, (C1)

∀s ∈ S, ∀i ∈ [N ], ∀πi, π′
i ∈ Πi, ∀π−i ∈ Π−i,

|ϕ(s, a)| ≤ N max
i∈[N ]

∥ui∥∞, ∀s ∈ S, a ∈ A.

Here, we use

Vi(s, π) =
∑

s′∈S,a′∈A

ds(s′, a′; π)ui(s
′, a′), and Ψ(s, π) =

∑
s′∈S,a′∈A

ds(s′, a′; π)ϕ(s′, a′),

for some ϕ : S × A→ R.
Note that (2.9) is a semi-infinite linear programming where the objective is a linear

function with an uncountable number of linear constraints. Particularly, in (C1) there is one
linear constraint corresponding to each tuple (s, i, πi, π

′
i, π−i). Moreover, the coefficients of

each linear constraint in (C1) are composed of state-action occupancy measures which are
computed by solving a Bellman equation. There are a number of algorithmic approaches to
solve semi-infinite linear programming problems [141, 82].

2.4.1 Algorithms to Solve Semi-Infinite Linear Programming

In this section, we present an algorithm based on the stochastic gradient method from [141]
to solve the semi-infinite linear programming problem (2.9). Denote C := Nmax

i∈[N ]
∥ui∥∞ and
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define

g(ϕ, y; π, π′) = max

{
max
i∈I

∣∣∣∑
s′,a′

(ds(s′, a′; πi, π−i)− ds(s′, a′; π′
i, π−i))(ϕ− ui)(s

′, a′)
∣∣∣− y,

max
s∈S,a∈A

|ϕ(s, a)| − C

}
,

(2.10)
which ensures that constraint (C1) in (2.9) can be rewritten as g(ϕ, y; π, π′) ≤ 0,∀π, π′ ∈ Π.
Let h : R → R be a convex differentiable function such that

h(x) = 0 for all x ≤ 0, and h(x) > 0 for all x > 0.

A candidate choice of h is h(x) = (max{0, x})2. Finally, we consider step-size schedules
{ηt}∞t=1 and {βt}∞t=1 such that

lim
t→∞

βt = ∞,
∞∑
t=1

η2t β
2
t <∞,

∞∑
t=1

ηt = ∞, and ηt > 0, βt < βt+1 for all t ≥ 0. (2.11)

Theorem 4 in [141] shows that with probability 1, (y(t), ϕ(t)) almost surely converges to a
solution of (2.9).

Algorithm 1 Algorithm to solve (2.9) [141]

Input: y(0) ∈ R+, ϕ
(0) ∈ RS×A, {ηt}∞t=1 and {βt}∞t=1 satisfying (2.11).

for t = 0, 1, 2, ..., T − 1 do
Sample π, π′ in Π from uniform distribution and calculate g(ϕ(t), y(t); π, π′) in (2.10).
Update ϕ(t) with

ϕ(t+1) = ϕ(t)−ηt+1βt+1h
′ (g (ϕ(t), y(t); π, π′)) · ∇ϕg

(
ϕ(t), y(t); π, π′) , (2.12)

and update y(t) with

y(t+1) = y(t) − ηt+1

(
1 + βt+1h

′ (g (ϕ(t), y(t); π, π′)) · ∇yg
(
ϕ(t), y(t); π, π′) ).

end for

State-wise potential games. Algorithm 1 iteratively updates the variables y ∈ R and
ϕ ∈ RS×A. However, this method may be slow as the dimension of ϕ scales with |S| · |A|.
For MCGs, where each state is a static potential game, one can utilize the game structure
to accelerate the convergence of algorithm.

For an MCG Gmcg, there exists a function ϕ∗ : S×A→ R such that for every i ∈ [N ], s ∈
S, ai, a

′
i ∈ Ai, a−i ∈ A−i, |ϕ∗(s, ai, a−i) − ϕ∗(s, a′i, a−i) − (ui(s, ai, a−i) − ui(s, a

′
i, a−i))| = 0.
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Figure 2.1: Estimating α in a Markov congestion game
Note. The value of α is computed using Algorithm 1 with ϕ(0) = ϕ∗, ηt =

1
t , βt = t0.4999, ∀t ≥ 1.

Figure 2.2: Variation of α with the discount factor in the perturbed Markov team game
Note. The number of players is N = 3, and perturbation parameter is κ = 0.1; The setup of this game is

same as that in Section 2.6 with λ1 = λ3 = 0.8, λ2 = λ4 = 0.2.

Then one can input ϕ(0) = ϕ∗ and omit the update of ϕ(t) in (2.12) in Algorithm (1). Figure
2.1 shows the empirical performance of Algorithm 1 for the Markov congestion game. Note
that with the setting in Section 2.6, y(t) converges to 0, which suggests that Gmcg may be an
MPG, at least for some model parameters.

Perturbed team games. Figure 2.2 illustrates how α varies with different discount factors
γ in a PMTG using Algorithm 1. Note that the growth of the numerical estimate of α is
much more benign than the analytical characterization obtained in Proposition 2.3.3.
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2.5 Approximation Algorithms and Nash-Regret

Analysis

In this section, we present two equilibrium approximation algorithms for Markov α-potential
games: the projected gradient-ascent algorithm, proposed in [49] for MPGs, and the sequential
maximum improvement algorithm, where each player’s strategy is updated based on a one-
stage smoothed best response. We also derive non-asymptotic convergence rates for these
algorithms in terms of Nash-regret, defined as Nash-regret(T ) := 1

T

∑T
t=1maxi∈[N ]R

(t)
i , where

R
(t)
i := maxπ′

i∈Πi
Vi

(
µ, π′

i, π
(t)
−i

)
− Vi

(
µ, π(t)

)
, and π(t) denotes the t-th iterate. Note that

Nash-regret is always non-negative; if Nash-regret(T ) ≤ ϵ for some ϵ > 0, then there exists
t† such that π(t†) is an ϵ-stationary NE.

2.5.1 Projected Gradient-Ascent Algorithm

First, we define some useful notations. Given a joint policy π ∈ Π, define player i’s Q-
function as Qπ

i (s, ai) = Ea−i∼π−i(s)

[
ui(s, ai, a−i)+γ

∑
s′∈S P (s

′|s, ai, a−i)Vi(s′, π)
]
, and denote

Qπ
i (s) = (Qπ

i (s, ai))ai∈Ai
. Let κµ denote the maximum distribution mismatch of π relative

to µ, and let κ̃µ denote the minimax value of the distribution mismatch of π relative to µ.
That is,

κµ := sup
π∈Π

∥∥dπµ/µ∥∥∞ , κ̃µ := inf
ν∈P(S)

sup
π∈Π

∥dπµ/ν∥∞, (2.13)

where the division dπµ/ν is evaluated in a component-wise manner. The algorithm iterates for

T steps. We abuse the notation to use Q
(t)
i to denote Qπ(t)

i , and Q
(t)
i to denote Qπ(t)

i . In every
step t ∈ [T − 1], each player i ∈ [N ] updates her policy following a projected gradient-ascent
algorithm as in (2.14).

Algorithm 2 Projected Gradient-Ascent Algorithm

Input: Step size η, for every i ∈ [N ], ai ∈ Ai, s ∈ S, set π
(0)
i (ai|s) = 1/|Ai|.

for t = 0, 1, 2, ..., T − 1 do
For every i ∈ [N ], s ∈ S, update the policies as follows

π
(t+1)
i (s) = ProjΠi

(
π
(t)
i (s) + ηQ

(t)
i (s)

)
, (2.14)

where ProjΠi
denotes the orthogonal projection on Πi.

end for

Remark 2.5.1. Algorithm 1 is not the standard policy gradient algorithm. The standard

policy gradient is given by
∂V π

i (ρ)

∂πi(ai|s) = 1/(1− γ) · dπρ(s)Qπ
i (s, ai) [101]. The RHS in the this

equation scales with the state visitation frequency dπρ(s), which results in slow learning rate
for states with low visitation frequencies under the current policy. To address this issue,
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[49] proposed to remove the term dπρ(s)/(1 − γ) from the standard policy gradient update,
which accelerates the learning for states with low visitation probabilities. We adopted the
convention of [49] to call it “policy gradient-ascent algorithm”.

Theorem 2.5.1. Given a Markov α-potential game with an α-potential function Φ and an
initial state distribution µ, the policy updates generated from Algorithm 2 satisfies

(i) Nash-regret(T ) ≤ O
(√

κ̃µĀN

(1−γ)
9
4

(
CΦ

T
+N2α

) 1
4

)
with η =

(1−γ)2.5
√
CΦ+N2αT

2NĀ
√
T

;

(ii) Nash-regret(T ) ≤ O
(√

min (κµ,|S|)4NĀ
(1−γ)6

(
CΦ

T
+N2α

) 1
2

)
with η = (1−γ)4

8min (κµ,|S|)3NĀ
,

where Ā := maxi∈[N ] |Ai|, κµ and κ̃µ are defined in (2.13), and CΦ > 0 is a constant satisfying
|Φ(µ, π)− Φ(µ, π′)| ≤ CΦ for any π, π′ ∈ Π, µ ∈ P(S).

We emphasize that the Nash-regret bounds in Theorem 2.5.1 (also Theorem 2.5.2 in the
next section) will hold even without knowing the exact form of Φ and the game elasticity
parameter α. It is sufficient to have an upper bound ᾱ for α and an associated function Ψ
for which this upper bound holds. In the special case of α = 0, the Nash-regret bound in
Theorem 2.5.1 recovers the Nash-regret bound from [49] for MPG.

The proof of Theorem 2.5.1 is inspired by [49] for the Nash-regret analysis of MPGs.
First, we state multi-player performance difference lemma (Lemma 2.5.1), which enables
bounding the Nash-regret of an algorithm by summing the norms of policy updates, denoted
as ∥π(t+1)

i −π(t)
i ∥. The main modification for our analysis is to bound the sum of these policy

update differences by the game elasticity parameter α and the change in the α-potential
function Φ (Lemma 2.5.2).

Lemma 2.5.1 (Performance difference (Lemma 1 in [49])). For any i ∈ [N ], µ ∈ P(S),
π′
i, πi ∈ Πi, and π−i ∈ Π−i,

Vi(µ, π
′
i, π−i)− Vi(µ, πi, π−i) =

1

1− γ

∑
s,ai

d
π′
i,π−i
µ (s) · (π′

i(ai|s)− πi(ai|s))Qπi,π−i

i (s, ai) .

Lemma 2.5.2 (Policy improvement). For Markov α-potential game (2.3) with any state
distribution ν∈ P(S), the α-potential function Φ(ν, π) at two consecutive policies π(t+1) and
π(t) in Algorithm 2 satisfies

(i)Φ(ν, π(t+1))− Φ(ν, π(t)) +N2α

≥ −4η2Ā2N2

(1− γ)5
+

1

2η(1− γ)

∑
i∈[N ],s∈S

d
π
(t+1)
i ,π

(t)
−i

ν (s)
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥2 ;
(ii)Φ(ν, π(t+1))− Φ(ν, π(t)) +N2α

≥ 1

2η(1− γ)

(
1− 4ηκ3νĀN

(1− γ)4

) ∑
i∈[N ],s∈S

d
π
(t+1)
i ,π

(t)
−i(s)

ν ·
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥2 .
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Proof of Theorem 2.5.1 Using the variational characterization of projection operation
in (2.14), we note that for any π′

i ∈ Πi,〈
π′
i(s)− π

(t+1)
i (s), ηQ

(t)
i (s)− π

(t+1)
i (s) + π

(t)
i (s)

〉
Ai

≤ 0.

Therefore, for any π′
i ∈ Πi,〈

π′
i(s)− π

(t)
i (s),Q

(t)
i (s)

〉
Ai

=
〈
π′
i(s)− π

(t+1)
i (s),Q

(t)
i (s)

〉
Ai

+
〈
π
(t+1)
i (s)− π

(t)
i (s),Q

(t)
i (s)

〉
Ai

≤ 1

η

〈
π′
i(s)− π

(t+1)
i (s), π

(t+1)
i (s)− π

(t)
i (s)

〉
Ai

+
〈
π
(t+1)
i (s)− π

(t)
i (s),Q

(t)
i (s)

〉
Ai

.

Note that for any two probability distributions p1 and p2, ∥p1 − p2∥ ≤ ∥p1 − p2∥1 ≤ 2.
Therefore,〈

π′
i(s)− π

(t)
i (s),Q

(t)
i (s)

〉
Ai

≤ 2

η

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥+ ∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥∥∥∥Q(t)
i (s)

∥∥∥
≤ 3

η

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥ , (2.15)

where the last inequality is due to
∥∥∥Q(t)

i (s)
∥∥∥ ≤

√
Ā

1−γ and η ≤ 1−γ√
Ā
. Hence, by Lemma 2.5.1

and (2.15),

T · Nash-regret(T ) =
T∑
t=1

max
i∈[N ],π′

i

Vi(µ, π
′
i, π

(t)
−i)− Vi(µ, π

(t))

=
T∑
t=1

max
π′
i

∑
s,ai

d
π′
i,π

(t)
−i

µ (s)

1− γ
(π′

i (ai|s)− π
(t)
i (ai|s))Q(t)

i (s, ai)

≤ 3

η(1− γ)

T∑
t=1

∑
s

d
π′
i,π

(t)
−i

µ (s)
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥ ,
where in the second line we slightly abuse the notation i to represent argmaxi and in the
last line we slightly abuse the notation π′

i to represent argmaxπ′
i
. Now, continuing the above

calculation with an arbitrary ν ∈ P(S) and using

d
π′
i,π

(t)
−i

µ (s)

d
π
(t+1)
i ,π

(t)
−i

ν (s)

≤ d
π′
i,π

(t)
−i

µ (s)

(1− γ)ν(s)
≤

supπ∈Π
∥∥dπµ/ν∥∥∞

1− γ
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to get:

T · Nash-regret(T )

≤
3
√
supπ∈Π

∥∥dπµ/ν∥∥∞
η(1− γ)

3
2

T∑
t=1

∑
s

√
d
π′
i,π

(t)
−i

µ (s)d
π
(t+1)
i ,π

(t)
−i

ν (s) ·
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥ (2.16)

≤
3
√
supπ∈Π

∥∥dπµ/ν∥∥∞
η(1− γ)

3
2

√√√√ T∑
t=1

∑
s

d
π′
i,π

(t)
−i

µ (s) ·

√√√√ T∑
t=1

N∑
i=1

∑
s

d
π
(t+1)
i ,π

(t)
−i(s)

ν

∥∥∥π(t+1)
i (s)− π

(t)
i (s)

∥∥∥2,
where the last inequality follows from the Cauchy-Schwarz inequality and replacing i (argmaxi)
by the sum over all players. There are two choices to proceed beyond (2.16):
1) Fix ϵ > 0. Take ν∗ϵ ∈ P(S) such that supπ∈Π

∥∥dπµ/ν∗ϵ ∥∥∞ − ϵ ≤ infν∈P(S) supπ∈Π
∥∥dπµ/ν∗ϵ ∥∥∞ .

Then apply Lemma 2.5.2 (i) and the fact |Φ(ν, π)−Φ(ν, π′)| ≤ CΦ for any π, π′ ∈ Π, ν ∈ P(S)
to get

Nash-regret(T ) ≤ 3

T

(
2(κ̃µ + ϵ)T (CΦ +N2α · T )

η(1− γ)2
+

8(κ̃µ + ϵ)ηT 2Ā2N2

(1− γ)7

) 1
2

.

By letting ϵ to 0 and taking step size η =
(1−γ)2.5

√
CΦ+N2αT

2NĀ
√
T

, we have

Nash-regret(T ) ≤ 3 · 2 3
2

√
κ̃µĀN

(1− γ)
9
4

(
CΦ

T
+N2α

) 1
4

.

2) We can also proceed (2.16) with Lemma 2.5.2 (ii) and η ≤ (1−γ)4
8κ3νNĀ

to get

Nash-regret(T ) ≤ 6

√√√√supπ∈Π

∥∥∥dπµν ∥∥∥∞ (CΦ +N2α · T )

ηT (1− γ)2
.

We next discuss two special choices of ν for proving our bound. First, if ν = µ,

then η ≤ (1−γ)4
8κ3µNĀ

. By letting η = (1−γ)4
8κ3µNĀ

, the last square root term can be bounded by

O

(√
κ4µNĀ(CΦ+N2α·T )

T (1−γ)6

)
. Second, if ν = 1

|S|1, the uniform distribution over S, then κν ≤ 1
S
,

which allows a valid choice η = (1−γ)4
8|S|3NĀ ≤ (1−γ)4

8κ3νNĀ
. Hence, we can bound the last square root

term by O
(√

|S|4NĀ(CΦ+N2α·T )
T (1−γ)6

)
. Since ν is arbitrary, combining these two special choices

completes the proof.
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2.5.2 Sequential Maximum Improvement Algorithm

Let us first fix some notations. Associated with any Markov game G, we define smoothed (or
regularized) Markov game G̃, where the expected one-stage payoff of each player i with state
s under the joint policy π is ũi(s, π) = Ea∼π(s)[ui(s, a)]−τ

∑
j∈[N ] νj(s, πj), where νj(s, πj) :=∑

aj∈Aj
πj(aj|s) log(πj(aj|s)) is the entropy function, and τ > 0 denotes the regularization

parameter. With the smoothed one-stage payoffs, the expected total discounted infinite
horizon payoff of player i under policy π is given by

Ṽi(s, π) = Eπ
[ ∞∑
k=0

γk
(
ui(s

k, ak)− τ
∑
j∈[N ]

νj(s
k, πj)

)
|s0 = s

]
, (2.17)

for every s ∈ S. The smoothed (or entropy-regularized) Q-function is given by

Q̃π
i (s, ai) =

∑
a−i∈A−i

π−i(a−i|s)
(
ui(s, ai, a−i)− τ

∑
j∈[N ]

νj(s, πj) + γ
∑
s′∈S

P (s′|s, a)Ṽi(s′, π)
)
.

(2.18)
Algorithm 3 has two main components: first, it computes the optimal one-stage policy

update using the smoothed Q-function. Here, the vector of smoothed Q-functions is de-
noted by Q̃π

i (s) = (Q̃π
i (s, ai))ai∈Ai

. Second, it selects the player who achieves the maximum
improvement in the current state to adopt her one-stage policy update, with the policy for
the remaining players and the remaining states unchanged. More specifically, the algorithm
iterates for T time steps. In every time step t ∈ [T − 1], based on the current policy profile

π(t), we abuse the notation to use Q̃
(t)
i to denote Q̃π(t)

i and Q̃
(t)
i to denote Q̃π(t)

i . The expected

smoothed Q-function of player i is computed as Q̃
(t)
i (s, πi) =

∑
ai∈Ai

πi(ai|s)Q̃(t)
i (s, ai) for all

s ∈ S and all i ∈ [N ]. Then, each player computes her one-stage best response strategy by
maximizing the smoothed Q-function: for every i ∈ [N ], ai ∈ Ai, s ∈ S,

BR
(t)
i (ai|s) =

(
argmax
π′
i∈Πi

(
Q̃

(t)
i (s, π′

i)− τνi(s, π
′
i)
))

ai

=
exp(Q̃

(t)
i (s, ai)/τ)∑

a′i∈Ai
exp(Q̃

(t)
i (s, a′i)/τ)

, (2.19)

and its maximum improvement of smoothed Q-function value in comparison to current policy
is

∆
(t)
i (s) = max

π′
i∈Πi

(
Q̃

(t)
i (s, π′

i)− τνi(s, π
′
i)
)
−
(
Q̃

(t)
i (s, π

(t)
i )− τνi(s, π

(t)
i )
)
, ∀s ∈ S. (2.20)

Note that computing ∆
(t)
i is straightforward as the maximization in (2.20) is attained at

BR
(t)
i (s) (cf. (2.19)).



CHAPTER 2. MARKOV α-POTENTIAL GAMES 27

If the maximum improvement ∆
(t)
i (s) ≤ 0 for all i ∈ [N ] and all s ∈ S, then the algorithm

terminates and returns the current policy profile π(t). Otherwise, the algorithm chooses a
tuple of player and state (̄i(t), s̄(t)) associated with the maximum improvement value ∆

(t)
i (s),

and updates the policy of player ī(t) in state s̄(t) with her one-stage best response strategy2.
The policies of all other players and other states remain unchanged.

Remark 2.5.2. Using entropy regularization in (2.19) has several advantages: (i) unlike
Algorithm 2, it avoids projection over simplex which can be costly in large-scale problems;
(ii) it ensures that the optimizer is unique.

Remark 2.5.3. Algorithm 3 is reminiscent of the “Nash-CA” algorithm3 proposed in [131],
which requires each player to sequentially compute the best response policy using an RL al-
gorithm in each iteration, while keeping the strategies of other players fixed. Such sequential
best response algorithms are known to ensure finite improvement in the potential function
value in potential games [113], which ensures convergence. Meanwhile, Algorithm 3 does
not compute the best response strategy in the updates. Instead, it only computes a smoothed
one-step optimal deviation, as per (2.19), for the current state. The policies for the remain-
ing states and other players are unchanged. The analysis of such one-step deviation-based
dynamics is non-trivial and requires new techniques, as highlighted in the next section.

Remark 2.5.4. While Algorithm 2 can be run independently by each player in a decentralized
fashion, Algorithm 3 is centralized as players do not update their policies simultaneously.
Comparing Nash regret in Theorems 2.5.1 and 2.5.2, it is evident that the coordination in
Algorithm 3 ensures better scaling of regret with respect to the number of players.

Theorem 2.5.2. Consider a Markov α-potential game with an α-potential function Φ and
initial state distribution µ such that µ̄ := mins∈S µ(s) > 0. Denote Ā := maxi∈[N ] |Ai| and
C := maxi∈[N ] ∥ui∥∞. Then the policy updates generated from Algorithm 3 with parameter

τ =
1

N

(
log(Ā) +

log(Ā)√
α + CΦ

T

√
2 log(Ā)

(1− γ)

√
N

T
+

2
√
µ̄(1− γ) log(Ā)

8C
√
Ā
√
α + CΦ

T

)−1

(2.23)

has the Nash-regret(T ) bounded by

O

(√
N3/2Ā log(Ā)

(1− γ)5/2
√
µ̄

max

{(
α +

CΦ

T

) 1
2
,
(
α +

CΦ

T

) 1
4

})
,

where CΦ > 0 is a constant satisfying |Φ(µ, π)− Φ(µ, π′)| ≤ CΦ for any π, π′ ∈ Π, µ ∈ P(S).

2Any tie-breaking rule can be used here if the maximum improvement is achieved by more than one
tuple.

3Unlike this paper, the Nash-CA Algorithm in [131] was proposed in the context of finite horizon Markov
potential games.
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Algorithm 3 Sequential Maximum Improvement Algorithm

Input: Smoothness parameter τ , for every i ∈ [N ], ai ∈ Ai, s ∈ S, set π
(0)
i (ai|s) = 1/|Ai|.

for t = 0, 1, 2, ..., T − 1 do
Compute the maximum improvement of smoothed Q-function {∆(t)

i (s)}i∈[N ],s∈S as in
(2.20).

if ∆
(t)
i (s) ≤ 0 for all i ∈ [N ] and all s ∈ S then

return π(t).
else
Choose the tuple (̄i(t), s̄(t)) with the maximum improvement

(̄i(t), s̄(t)) ∈ argmax
i∈[N ],s∈S

∆
(t)
i (s), (2.21)

and update policy

π
(t+1)

ī(t)
(a|s̄(t)) =BR

(t)

ī(t)
(a|s̄(t)), ∀a ∈ Aī(t) , (2.22)

π
(t+1)
i (s) =π

(t)
i (s) ∀(i, s) ̸= (̄i(t), s̄(t)).

end if
end for

In the special case of α = 0, Theorem 2.5.2 provides a Nash-regret bound of Algorithm
3 for the case of MPGs.

To prove Theorem 2.5.2, we first develop a smoothed version of the multi-agent perfor-
mance difference lemma (Lemma 2.5.3). This lemma bounds the difference in the smoothed
value function Ṽi by the changes in policy πi, which is further bounded by the maximum
improvements ∆

(t)
i . Lemma 2.5.4 bounds the discrepancy between the value function Vi and

the smoothed value function Ṽi. Lemma 2.5.3 and 2.5.4 together implies that the Nash-
regret of Algorithm 3 is bounded by ∆

(t)
i (2.20). Finally, Lemma 2.5.5 establishes ∆

(t)
i can

be bounded by policy updates, which in turn, are bounded by α and the difference in the
α-potential function Φ.

Lemma 2.5.3 (Smoothed performance difference). For any i ∈ [N ], µ ∈ P(S), πi, π
′
i ∈

Πi, π−i ∈ Π−i,

Ṽi(µ, π)−Ṽi(µ, π′) =
1

1− γ

∑
s′∈S

dπµ(s
′)
(
(πi(s

′)− π′
i(s

′))⊤ · Q̃π′

i (s
′) + τνi(s

′, π′
i)− τνi(s

′, πi)
)
,

where π = (πi, π−i), and π
′ = (π′

i, π−i).

Lemma 2.5.4. For any i ∈ [N ], µ ∈ P(S), πi, π
′
i ∈ Πi, π−i ∈ Π−i,

∣∣∣Vi(µ, πi, π−i)−Vi(µ, π′
i, π−i)−

(Ṽi(µ, πi, π−i)− Ṽi(µ, π
′
i, π−i))

∣∣∣ ≤ 2τN log(Ā)
1−γ .
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Lemma 2.5.5. The following inequalities hold:

(1) ∆
(t)

ī(t)
(s̄(t)) ≤ 4C

√
Ā(1+τN log(Ā))

1−γ ∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))∥2, for any t ∈ [T ].

(2)
∑T−1

t=0 ∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))∥22 ≤ 2

τµ̄

(
|Φ(µ, π(T ))− Φ(µ, π(0))|+ αT + 2τN log(Ā)

1−γ

)
.

Proof of Theorem 2.5.2. First, we bound the instantaneous regret R
(t)
i for any arbitrary

player i ∈ [N ] at time t ∈ [T ]. Recall that R
(t)
i = Vi(µ, π

†
i , π

(t)
−i)− Vi(µ, π

(t)), where π†
i ∈

argmaxπ′
i∈Πi

Vi(µ, π
′
i, π

(t)
−i). By Lemma 2.5.4,

R
(t)
i ≤ Ṽi(µ, π

†
i , π

(t)
−i)− Ṽi(µ, π

(t)) +
2τN log(Ā)

(1− γ)
.

Next, note that for any i ∈ [N ], µ ∈ P(S), by Lemma 2.5.3,

Ṽi

(
µ, π†

i , π
(t)
−i

)
−Ṽi

(
µ, π

(t)
i , π

(t)
−i

)
≤ 1

1− γ

∑
s∈S

d
π†
i ,π

(t)
−i

µ (s)

(
τ(νi(s, π

(t)
i )− νi(s, π

′
i))

+ max
π′
i

∑
ai∈Ai

((
π′
i(ai|s)− π

(t)
i (ai|s)

)
Q̃

(t)
i (s, ai)

))
(a)
=

1

1− γ

∑
s∈S

d
π†
i ,π

(t)
−i

µ (s)∆
(t)
i (s)

(b)

≤ 1

1− γ

∑
s∈S

d
π†
i ,π

(t)
−i

µ (s)∆
(t)

ī(t)
(s̄(t))=

1

1− γ

(
∆

(t)

ī(t)
(s̄(t))

)
,

where (a) is by (2.20), (b) holds since ∆
(t)
i (s) ≤ ∆

(t)

ī(t)
(s̄(t)) for all i ∈ [N ], s ∈ S. To

summarize,

R
(t)
i ≤ 1

1− γ

(
∆

(t)

ī(t)
(s̄(t)) + 2τN log(Ā)

)
.

Then by Lemma 2.5.5 (1),

Nash-regret(T ) ≤ 1

T (1− γ)

∑
t∈[T ]

(
∆

(t)

ī(t)
(s̄(t)) + 2τN log(Ā)

)
≤2τN log(Ā)

(1− γ)
+

4C
√
Ā(1 + τN log(Ā))

T (1− γ)2
·
∑
t∈[T ]

∥∥∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))

∥∥∥
2

≤2τN log(Ā)

(1− γ)
+

4C
√
Ā(1 + τN log(Ā))√
T (1− γ)2

·
(∑
t∈[T ]

∥∥∥π(t+1)

ī(t)
(s̄(t))− π

(t)

ī(t)
(s̄(t))

∥∥∥2
2

) 1
2
, (2.24)
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where the last inequality follows from Cauchy-Schwarz inequality. For ease of exposition,

define D1 :=
8C

√
Ā√

µ̄(1−γ)2 , D2 :=
√
α + CΦ

T
, and D3 :=

√
2 log(Ā)
(1−γ) . Then by Lemma 2.5.5 (2),

(2.24)≤D1(1 + τN log(Ā))√
τ

√
D2

2 +
τN

T
D2

3 + τND2
3

≤D1(1 + τN log(Ā))√
τ

(
D2 +

√
τN

T
D3

)
+ τND2

3,

where the last inequality follows from the fact that for any two positive scalars x, y,
√
x+ y ≤√

x+
√
y. Setting τ as per (2.23) ensures that τ <

√
τ as τ ≤ 1. Thus,

Nash-regret(T ) ≤ D1D2√
τ

+
D1D3

√
N√

T
+
√
τN

(
D1D2 log(Ā) +D1D3 log(Ā)

√
N

T
+D2

3

)
.

Plugging in the value of τ as per (2.23) we obtain,

Nash-regret(T ) ≤
√
N

(
D2

1D
2
2 log(Ā) +D2

1D2D3 log(Ā)

√
N

T
+D1D2D

2
3

) 1
2

+
D1D3

√
N√

T

≤ D1D2

√
N
√

log(Ā) +D1

√
D2D3 log(Ā)

N
3
4

T
1
4

+
√
D1D2D3

√
N +

D1D3

√
N√

T
.

Note that D3 ≥ 1 and additionally, we assume that D1 ≥ 1 (choose large enough C that
ensures this). Then,

Nash-regret(T )

≤ D1D2D3

√
N
√

log(Ā) +D1D3

√
D2 log(|Ā|)

N
3
4

T
1
4

+
√
D2D1D3

√
N +

D1D3

√
N√

T

≤ D1D3

√
N log(Ā)

(
D2 +

√
D2

(
1 +

(
N

T

) 1
4

)
+

√
1

T

)
≤ D1D3

√
log(Ā)N

3
4O(max{D2,

√
D2}).

The proof is finished by plugging in D1, D2 and D3.

2.6 Numerical Experiments

This section studies the empirical performance of Algorithms 2 and 3 for Markov conges-
tion game (MCG) and perturbed Markov team game (PMTG) discussed in Section 2.2.2.
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Although Section 2.5 focuses on model-based algorithms, in our numerical study both Algo-
rithm 2 and Algorithm 3 are implemented in a model-free manner, where the Q-functions
are estimated from samples [49, 101]. Below are the details of the setup of the experiments.

MCG: Consider MCG with N = 8 players, where there are |E| = 4 facilities A,B,C,D
that each player can select from, i.e., |Ai| = 4. For each facility j, there is an associated state
sj: normal (sj = 0) or congested (sj = 1) state, and the state of the game is s = (sj)j∈E.
The reward for each player being at facility k is equal to wsafe

k times the number of players
at k = A,B,C,D. We set wsafe

A = 1 < wsafe
B = 2 < wsafe

C = 4 < wsafe
D = 6, i.e., facility

D is most preferable by all players. However, if more than N/2 players find themselves in
the same facility, then this facility transits to the congested state, where the reward for each
player is reduced by a large constant c = −100. To return to the normal state, the facility
should contain no more than N/4 players.

PMTG: Consider a game where each player votes for approving or disapproving a
project, which is only conducted if a majority of players vote for approval. The state of
excitement about the project changes between different rounds depending on the number of
players approving it. Mathematically, consider a game with N = 16 players, where there are
two actions per player: approve (ai = 1) or disapprove (ai = 0). There can be two states of
the project: high (s = 1) and low (s = 0) levels of excitement for the project.

The individual reward of player i is given by ui(s, a) = 1{
∑

i ai≥N/2} + wi1{ai=s} − w′
iai,

where the first term represents the common utility derived by everyone if the project is
approved, the second term represents the utility derived by a player in approving a high-
priority project or disapproving a low-priority project, and the third term corresponds to
the cost of approving the project. Here, we set wi = 10κ · N+1−i

N
and w′

i = κ · i+1
N
. Here,

parameter κ captures the magnitude of perturbation.
The state transitions from the high excitement state to itself with probability λ1 if more

thanN/4 players approve it; otherwise, it transitions to itself with probability λ2. In contrast,
the state transitions from the low excitement state to high with probability λ3 if there are
at least N/2 approvers; if there are N/2 or fewer approvers, it transitions to high with
probability λ4.

For both games, we perform episodic updates with 20 steps and a discount factor γ = 0.99.
We estimate the Q-functions and the utility functions using the average of mini-batches of
size 10. For MCG, Figures 2.3a and 2.3b illustrate the average number of players taking
particular action in different states at the converged values of policy. For example, in the
state (0, 0, 0, 1) (denoted by the yellow label in Figure 2.3a and 2.3b), facility D is congested,
while the other facilities remain in a normal state. In this scenario, only N/4 = 2 players
select facility D to restore it to a normal state. Simultaneously, N/2 players choose facility
C, which provides the second-highest reward after D. The number of players at C is within
the congestion threshold (N/2), thus ensuring that it remains in a normal state.

For PMTG, we set λ1 = λ3 = 1, λ2 = λ4 = 0 and κ = 0.1. Figures 2.4a and 2.4b illustrate
the average number of players taking particular action in different states at the converged
values of policy. For example, in the “high” state of excitement about project (denoted by
the red label in Figure 2.4a and 2.4b), almost all players will select to approve as it will
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always remain in high state thereon. Meanwhile, if the state of excitement is “low”, then at
least half of the players select to approve it so that it transitions to “high” state in future.

Figures 2.3c and 2.4c depict the L1-accuracy in the policy space at each iteration, defined
as the average distance between the current policy and the final policy of all players, i.e.,
L1-accuracy = 1

N

∑
i∈I ∥πi − π

(T )
i ∥1. Figures 2.3c and 2.4c show that Algorithm 2 converges

faster for PMTG, while Algorithm 3 converges faster for MCG.

(a) (b) (c)

Figure 2.3: Markov congestion game
Note. (a) and (b) are distributions of players taking four actions in representative states using π(T ) given

by (a) Algorithm 2 with step-size η = 0.01; (b) Algorithm 3 with regularizer τt = 0.999t · 5. (c) is mean

L1-accuracy with shaded region of one standard deviation over all runs

Remark 2.6.1. We note that the regret bound proposed in our analysis can be loose. In
Figure 2.5, we compare growth of regret bound obtained in our theoretical results with that
obtained in experiments, where we observe significant gap between the two quantities. This
suggests an interesting direction of future research to develop tighter regret bounds.

(a) (b) (c)

Figure 2.4: Perturbed Markov team game
Note. (a) and (b) are distributions of players taking actions in all states: (a) using Algorithm 2 with

step-size η = 0.05; (b) using Algorithm 3 with regularizer τt = 0.9975t · 0.05. (c) is mean L1-accuracy with

shaded region of one standard deviation over all runs.
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Figure 2.5: Variation of Nash regret with the discount factor for perturbed Markov team
game
Note. The perturbation parameter is κ = 0.1 The red curve plots the function 1/(1− γ)9/4 (as stated in

Theorem 6.1) and the blue shaded region show the Nash regret computed through 10 rounds of

experiments with random initialization. Note that the scale on y-axis is in log.

2.7 Proofs of Main Results

2.7.1 Proofs in Section 2.3

Proof of Proposition 2.3.1

Let Φ be a potential function of MPG G. Using Definition 2.3.1, it suffices to show Φ ∈ FG.
First, we claim that for every s ∈ S, π, π′ ∈ Π,

|Φ(s, π)− Φ(s, π′)| ≤
N∑
i=1

|Vi(s, π̃(i))− Vi(s, π̃
(i+1))|, (2.25)

where for any i ∈ [N ], π̃(i) = (π′
1, π

′
2, ..π

′
i−1, πi, πi+1, ..., πN) with the understanding that

π̃(1) = π and π̃(N+1) = π′. To prove this claim, note that

|Φ(s, π)− Φ(s, π′)| =
∣∣∣∣ N∑
i=1

Φ(s, π̃(i))− Φ(s, π̃(i+1))

∣∣∣∣ ≤ N∑
i=1

∣∣Vi(s, π̃(i))− Vi(s, π̃
(i+1))

∣∣,
which follows from Definition 2.3.1 as π̃(i) and π̃(i+1) only differ at player i’s policy. By
(2.25), for any s ∈ S, π, π′ ∈ Π,

|Φ(s, π)− Φ(s, π′)| ≤ 2N max
i∈[N ]

∥Vi∥∞ ≤ 2N

1− γ
max
i∈[N ]

∥ui∥∞.

Without loss of generality, we have minπ∈Π Φ(s, π) = 0 for every s ∈ S. Therefore, ∥Φ∥∞ ≤
2N
1−γ maxi∈[N ] ∥ui∥∞.

To show that Φ lies in a uniformly equi-continuous set FG, we next show that Φ is
uniformly continuous. Note that for each s ∈ S and i ∈ [N ], Vi(s, ·) : Π → R is a continuous
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function [156, Lemma 2.10]. Given that Π is compact and |S| < ∞, for every ϵ > 0 there
exists δ̄(ϵ) > 0 such that max

i∈[N ],s∈S
|Vi(s, π) − Vi(s, π

′)| ≤ ϵ/N for any π, π′ ∈ Π satisfying

d(π, π′) ≤ δ̄(ϵ). Consequently, from (2.25), we conclude that for any ϵ > 0, |Φ(s, π) −
Φ(s, π′)| ≤ ϵ for any π, π′ ∈ Π satisfying d(π, π′) ≤ δ̄(ϵ).

Proof of Proposition 2.3.2

The proof of Proposition 2.3.2 relies on the following lemma.

Lemma 2.7.1. If there exists some ζ > 0 such that for all s, s′ ∈ S, |P (s′|s, w)−P (s′|s, w′)| ≤
ζ∥w − w′∥1. Then for any i ∈ [N ], πi, π

′
i ∈ Πi, π−i ∈ Π−i,

∥P πi,π−i − P π′
i,π−i∥∞ ≤ 2ζ|S|max

ai∈Ai

|ai|/N. (2.26)

Proof. For any i ∈ [N ], π ∈ Π, π′
i ∈ Πi, and s, s

′ ∈ S,

P πi,π−i(s′|s)− P π′
i,π−i(s′|s)

= Ea−i∼π−i
ai∼πi

[
P (s′|s, w(ai, a−i))− P (s′|s, w(ai, a−i))

]
≤ Ea−i∼π−i

[
P (s′|s, w(āi, a−i))− P (s′|s, w(ai, a−i))

]
, (2.27)

where the first equation is due to the structure of transition function,

āi ∈ argmaxai∈Ai
P (s′|s, w(ai, a−i)), and ai ∈ argminai∈Ai

P (s′|s, w(ai, a−i)).

By (2.27) and the Lipschitz property of the transition matrix in Lemma 2.7.1,

∑
s′∈S

|P πi,π−i(s′|s)− P π′
i,π−i(s′|s)|

(a)

≤ ζ|S|
N

E
a−i∼π−i

[∑
e∈E

|1(e ∈ āi)− 1(e ∈ ai)|

]

≤ 2ζ|S|maxai∈Ai
|ai|

N
, ∀ s ∈ S,

where (a) follows by (2.5).

Proof of Proposition 2.3.2. Recall that for any s ∈ S, the stage game is a potential game
with a potential function φ(s, a) = 1/N

∑
e∈E
∑we(a)N

j=1 ce (s, j/N). Under this notation, we
can equivalently write (2.6) as

Ψ(s, π) = φ(s, π) + γ
∑
s′∈S

P π(s′|s)Ψ(s′, π). (2.28)
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For the rest of the proof, fix arbitrary πi, π
′
i ∈ Πi, π−i ∈ Π−i and denote π = (πi, π−i), π

′ =
(π′

i, π−i). By (2.28),

Ψ(s, π)−Ψ(s, π′) = φ(s, π)− φ(s, π′) + γ
∑
s′∈S

(
P π(s′|s)Ψ(s′, π)− P π′

(s′|s)Ψ(s′, π′)
)
.

(2.29)

Additionally, recall that Vi(s, π) = ui(s, π) + γ
∑

s′∈S P
π(s′|s)Vi(s′, π). Consequently,

Vi(s, π)− Vi(s, π
′) = ui(s, π)− ui(s, π

′) (2.30)

+ γ
∑
s′∈S

(
P π(s′|s)Vi(s′, π)− P π′

(s′|s)Vi(s′, π′)
)
.

Subtracting (2.29) from (2.30), we obtain

Vi(s, π)− Vi(s, π
′)− (Ψ(s, π)−Ψ(s, π′))

=γ
∑
s′∈S

P π(s′|s) (Vi(s′, π)−Ψ(s′, π))− γ
∑
s′∈S

P π′
(s′|s) (Vi(s′, π′)−Ψ(s′, π′))

=γ
∑
s′∈S

P π(s′|s) (Vi(s′, π)− Vi(s
′, π′) + Ψ(s′, π′)−Ψ(s′, π))

− γ
∑
s′∈S

(
P π′

(s′|s)− P π(s′|s)
)
(Vi(s

′, π′)−Ψ(s′, π′)) .

Thus,

max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Ψ(s, π)−Ψ(s, π′))| (2.31)

≤ γmax
s∈S

|Vi(s, π)− Vi(s, π
′)− (Ψ(s, π)−Ψ(s, π′)) |

+ γmax
s′∈S

|Ψ(s′, π′)− Vi(s
′, π′)|max

s∈S

∑
s′∈S

∣∣∣P π(s′|s)− P π′
(s′|s)

∣∣∣ .
Rearranging terms leads to

(2.31) ≤ γ

1− γ
max
s′∈S

|Ψ(s′, π′)− Vi(s
′, π′)|∥P π − P π′∥∞

≤ 2γζ|S|maxai∈Ai
|ai|

(1− γ)N
max
s′∈S

|Ψ(s′, π′)− Vi(s
′, π′)|. (2.32)

where the last inequality follows from Lemma 2.7.1. Finally, since

ui(s
k, ak) =

∑
e∈E

ce(s
k, wke )1(e ∈ aki ) ≤

∑
e∈E

ce(s
k, wke ) ≤ φ(sk, ak),
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then for any s′ ∈ S,

|Ψ(s′, π′)− Vi(s
′, π′)| ≤ Eπ′

[
∞∑
k=0

γk
∣∣φ(sk, ak)− ui(s

k, ak)
∣∣]

≤

∣∣∣∣∣Eπ′

[
∞∑
k=0

γkφ(sk, ak)

]∣∣∣∣∣ ≤ sup
s,π

Ψ(s, π).

Plugging the above inequality into (2.32) finishes the proof.

Proof of Proposition 2.3.3

Throughout the proof, let us fix arbitrary i ∈ [N ], πi, π
′
i ∈ Πi, π−i ∈ Π−i, and define π =

(πi, π−i), π
′ = (π′

i, π−i). We show that for every i ∈ [N ], πi, π
′
i ∈ Πi, π−i ∈ Π−i,

max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Ψ(s, π)−Ψ(s, π′))| ≤ 2κ

(1− γ)2
,

where Ψ(s, π) := Eπ
[∑∞

k=0 γ
kr(sk, ak)|s0 = s

]
. Note that

Ψ(s, π) = r(s, π) + γ
∑
s′∈S

P π(s′|s)Ψ(s′, π). (2.33)

By (2.33), for any s ∈ S,

Ψ(s, π)−Ψ(s, π′) = r(s, π)− r(s, π′) + γ
∑
s′∈S

(
P π(s′|s)Ψ(s′, π)− P π′

(s′|s)Ψ(s′, π′)
)
.

(2.34)
Similarly, for any s ∈ S,

Vi(s, π)− Vi(s, π
′) = ui(s, π)− ui(s, π

′) + γ
∑
s′∈S

P π(s′|s)Vi(s′, π)− P π′
(s′|s)Vi(s′, π′).

(2.35)
Consequently,

Vi(s, π)− Vi(s, π
′)− (Ψ(s, π)−Ψ(s, π′))

=ui(s, π)− ui(s, π
′)− (r(s, π)− r(s, π′))

− γ
∑
s′∈S

(
P π′

(s′|s)− P π(s′|s)
)
(Vi(s

′, π′)−Ψ(s′, π′))

+ γ
∑
s′∈S

P π(s′|s) (Vi(s′, π)− Vi(s
′, π′) + Ψ(s′, π′)−Ψ(s′, π)) .
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Since |ui(s, π)− ui(s, π
′)− (r(s, π)− r(s, π′))| ≤ 2∥ξi∥∞ ≤ 2κ, then

max
s∈S

|Vi(s, π)− Vi(s, π
′)− (Ψ(s, π)−Ψ(s, π′)) | (2.36)

≤2κ+ 2γmax
s′∈S

|Ψ(s′, π′)− Vi(s
′, π′)|

+ γmax
s∈S

|Vi(s, π)− Vi(s, π
′)− (Ψ(s, π)−Ψ(s, π′)) |.

Rearranging terms in above inequality, we obtain

(2.36) ≤ 2κ

1− γ
+

2γ

1− γ
max
s′∈S

|Ψ(s′, π′)− Vi(s
′, π′)|. (2.37)

Note that |Ψ(s′, π′)−Vi(s′, π′)| = |
∑∞

k=0 γ
kξi(s, π

′(sk))| ≤ κ/(1− γ). Plugging this inequality
into (2.37) completes the proof.

2.7.2 Proofs in Section 2.4

Proof of Proposition 2.4.1

To prove Proposition 2.4.1, we first need the following lemma.

Lemma 2.7.2 (Lemma B.1 in [156]). Fix i ∈ [N ] and K ∈ N. For any s ∈ S and

ω =
(
s̃k, ãk

)K
k=0

∈ (S × A)K+1, the mapping Π ∋ π 7→ Eπ
[
1
(
(sk, ak)Kk=0 = ω

)
| s0 = s

]
is continuous.

Proof of Proposition 2.4.1. Fix ϵ > 0 and defineM := N maxi∈[N ] ∥ui∥∞. ChooseK ∈ N
large enough that γK ·M

1−γ < ϵ
4
and ϵ̃ := (1−γ)ϵ

2M |S|K+1|A|K+1 . Since Π is compact and S ×A is finite,

Lemma 2.7.2 ensures that there exists δ(ϵ) such that for any π, π′ ∈ Π with d(π, π′) ≤ δ(ϵ),
and ω ∈ (S × A)K+1, s ∈ S,∣∣∣∣Eπ [1 ((sk, ak)Kk=0 = ω

)
| s0 = s

]
− Eπ′

[
1
(
(sk, ak)Kk=0 = ω

)
| s0 = s

] ∣∣∣∣ ≤ ϵ̃. (2.38)

From (2.7), we note that for any Ψ ∈ F̃G, there exists ϕ : S × A→R such that for any
π, π′ ∈ Π, s ∈ S,

|Ψ(s, π)−Ψ(s, π′)|

≤

∣∣∣∣∣Eπ
[

K∑
k=0

γkϕ
(
sk, ak

)
| s0 = s

]
− Eπ′

[
K∑
k=0

γkϕ
(
sk, ak

)
| s0 = s

] ∣∣∣∣∣+ ϵ

2
. (2.39)

Define a function φ : (S × A)K+1 → R such that for every
(
s̃k, ãk

)K
k=0

∈ (S × A)K+1,

φ
(
s̃0, ã0, · · · , s̃K , ãK

)
:=
∑K

k=0 γ
kϕ
(
s̃k, ãk

)
. Thus, for any π ∈ Π,

Eπ

[
K∑
k=0

γkϕ
(
sk, ak

)
| s0 = s

]
=

∑
ω∈(S×A)K+1

φ(ω)Eπ
[
1

((
sk, ak

)K
t=0

= ω
) ∣∣∣∣s0 = s

]
.
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Thus, by applying the above equation and (2.38) to (2.39), we obtain that for any s ∈
S, π, π′ ∈ Π satisfying d(π, π′) ≤ δ(ϵ),

|Ψ(s, π)−Ψ(s, π′)| ≤ ∥φ∥∞|S|K+1|A|K+1ϵ̃+
ϵ

2
≤ M |S|K+1|A|K+1ϵ̃

1− γ
+
ϵ

2
≤ ϵ.

Since we chose arbitrary Ψ ∈ F̃G, and δ is independent of the choice of Ψ, then F̃G is
equi-continuous. Thus, F̃G ⊆ FG.

2.7.3 Proofs in Section 2.5.1

Proof of Lemma 2.5.2

To prove Lemma 2.5.2, we define πi∼j := {πk}j−1
k=i+1 as the joint policy for players from i+ 1

to j− 1; π<i := {πk}i−1
k=1, and π>j := {πk}Nk=j+1 are defined similarly. Next, we recall a useful

result from [49].

Lemma 2.7.3 (Lemma 2 in [49]). For any function f : Π → R, and any two policies
π, π′ ∈ Π,

f(π′)− f(π) =
N∑
i=1

(f(π′
i, π−i)− f(π))

+
N∑
i=1

N∑
j=i+1

(
f(π<i,i∼j, π

′
>j, π

′
i, π

′
j)− f(π<i,i∼j, π

′
>j, πi, π

′
j)

− f(π<i,i∼j, π
′
>j, π

′
i, πj) + f(π<i,i∼j, π

′
>j, πi, πj)

)
. (2.40)

Next, we state a result that lower bounds the improvement in value function of each
player in each step of Algorithm 2.

Lemma 2.7.4. Consider a Markov game G with initial state distribution ν, let π(t+1) and
π(t) be consecutive policies in Algorithm 2. Then we have,

(i)Vi(ν, π
(t+1))− Vi(ν, π

(t))

≥ −4η2Ā2N2

(1− γ)5
+

1

2η(1− γ)
·
∑

i∈[N ],s∈S

d
π
(t+1)
i ,π

(t)
−i

ν (s)
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥2 ;
(ii)Vi(ν, π

(t+1))− Vi(ν, π
(t))

≥ 1

2η(1− γ)

(
1− 4ηκ3νĀN

(1− γ)4

)
·
N∑
i=1

∑
s∈S

d
π
(t+1)
i ,π

(t)
−i

ν (s)
∥∥∥π(t+1)

i (s)− π
(t)
i (s)

∥∥∥2 .
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Proof. This result directly follows from [49, Lemma 3]. Specifically, the proof of [49, Lemma
3] is established by lower-bounding the difference Φ(ν, π(t+1)) − Φ(ν, π(t)) for a Markov po-
tential game with potential function Φ. At its core, the proof relies on the key property of
Markov potential games, which allows the difference in potential functions to be expressed
as the difference in value functions for each player. The remainder of the proof focuses on
lower-bounding the difference in value functions at each step of the policy update process in
Algorithm 2, which is precisely what we require. We omit details due to space constraints.

Proof of Lemma 2.5.2. For ease of exposition, let π′ = π(t+1) and π = π(t). By
Definition 2.2.3, |Vi(ν, π′

i, π−i) − Vi(ν, πi, π−i) − (Φ(ν, π′
i, π−i) − Φ(ν, πi, π−i))| ≤ α for any

ν, i ∈ [N ], πi, π
′
i ∈ Πi and π−i ∈ Π−i. Apply Lemma 2.7.3 with f(·) = Vi(ν, ·) − Φ(ν, ·)

respectively. Since each term in (2.40) only differs in one player’s policy, we obtain

|Vi(ν, π′)− Vi(ν, π)− (Φ(ν, π′)− Φ(ν, π′))| ≤
N∑
i=1

α +
N∑
i=1

N∑
j=i+1

α ≤ N2α.

The proof follows by the above inequality and Lemma 2.7.4.

2.7.4 Proofs in Section 2.5.2

Proof of Lemma 2.5.3

Fix arbitrary i ∈ [N ], µ ∈ P(S), πi, π
′
i ∈ Πi, π−i ∈ Π−i. We define π = (πi, π−i), π

′ =
(π′

i, π−i) ∈ Π. Note that

Ṽi(µ, π)− Ṽi(µ, π
′)

= Eπ
[ ∞∑
k=0

γk
(
ui(s

k, ak)− τ
∑
j∈[N ]

νj(s
k, πj)− Ṽi(s

k, π′) + Ṽi(s
k, π′)

)]
− Ṽi(µ, π

′)

= Eπ
[ ∞∑
k=0

γk
(
ui(s

k, ak)− τ
∑
j∈[N ]

νj(s
k, πj)− Ṽi(s

k, π′)

)]
+ Eπ

[
∞∑
k=1

γkṼi(s
k, π′)

]
. (2.41)

Note that

Eπ
[ ∞∑
k=1

γkṼi(s
k, π′)

]
= γEπ

[
∞∑
k=0

γkṼi(s
k+1, π′)

]
,
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thus,

(2.41) = Eπ
[ ∞∑
k=0

γk
(
ui
(
sk, ak

)
− τ

∑
j∈[N ]

νj
(
sk, πj

)
− Ṽi

(
sk, π′)+ γṼi

(
sk+1, π′) )]

= Eπ
[ ∞∑
k=0

γk
(
ui(s

k, ak)− τ
∑
j∈[N ]

νj(s
k, π′

j)+γ
∑
s′∈S

P (s′|sk, ak)Ṽi(s′, π′)− Ṽi(s
k, π′)

+ τ
∑
j∈[N ]

νj(s
k, π′

j)− τ
∑
j∈[N ]

νj(s
k, πj)

)]
. (2.42)

We can continue the above calculations by applying smoothed Q-function and noting that
π′
j = πj for all j ̸= i and Ṽi(s

′, π′) = π′
i(s

′)⊤Q̃π′
i (s

′),

(2.42) = Eπi
[ ∞∑
k=0

γk
(
Q̃π′

i (s
k, aki )− Ṽi(s

k, π′) + τ
∑
j∈[N ]

νj(s
k, π′

j)− τ
∑
j∈[N ]

νj(s
k, πj)

)]
=

1

1− γ

∑
s′∈S

dπµ(s
′)
(
πi(s

′)− π′
i(s

′)
)⊤

Q̃π′

i (s
′) + τνi(s

′, π′
i)− τνi(s

′, πi)
)
.

Proof of Lemma 2.5.4

From the definition of smoothed infinite horizon utility (2.17), we note that for every i ∈
[N ], πi ∈ Πi, π−i ∈ Π−i, s ∈ S,

Ṽi(s, πi, π−i) = Vi(s, πi, π−i)− τEπ

 ∞∑
k=0

γk
∑
j∈[N ]

νj(s
k, πj)|s0 = s

 . (2.43)

Using (2.43), it holds that for any µ ∈ P(S) and π ∈ Π,

|Ṽi(µ, π)− Vi(µ, π)| = τ

∣∣∣∣∣∣Eµ,π
 ∞∑
k=0

γk
∑
j∈[N ]

νj(s
k, πj)

∣∣∣∣∣∣
≤ τN maxs,πi νi(s, πi)

1− γ
=
τN log(Ā)

1− γ
. (2.44)

The desired result follows from triangle inequality and (2.44).

Proof of Lemma 2.5.5

The proof of Lemma 2.5.5 requires the following technical lemmas.
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Lemma 2.7.5. If G is a Markov α-potential game with Φ as its α-potential function, then

for any s ∈ S, i ∈ [N ], π′
i, πi ∈ Πi, π−i ∈ Π−i,

∣∣∣(Ψ̃(s, π′
i, π−i)− Ψ̃ (s, πi, π−i))− (Ṽi(s, π

′
i, π−i)−

Ṽi(s, πi, π−i))
∣∣∣ ≤ α, where

Ψ̃(s, π) := Φ(s, π)− τEπ[
∑
j∈[N ]

∞∑
k=0

γkνj(s
k, πj) | s0 = s].

Proof. To ease the notation, for function f : S × Π→R, we write f(s, ·) as f s(·). By (2.43)
and the definition of Ψ̃ in Lemma 2.5.5, we have for all s ∈ S, i ∈ [N ], π′

i, πi ∈ Πi, π−i ∈ Π−i,

|Ψ̃s(π′
i, π−i)− Ψ̃s(πi, π−i)− (Ṽ s

i (π
′
i, π−i)− Ṽ s

i (πi, π−i))|
=|Φs(π′

i, π−i)− Φs(πi, π−i)− (V s
i (π

′
i, π−i)− V s

i (πi, π−i))|,

which is bounded by α using Definition 2.2.4.

Lemma 2.7.6. For any i ∈ [N ], s ∈ S, π′
i ∈ Πi, t ∈ [T ], it hold that∑

ai∈Ai

Q̃
(t)
i (s, ai)

(
BR

(t)
i (ai|s)− π′

i(ai|s)
)

≥ τ
∑
ai∈Ai

log
(
BR

(t)
i (ai|s)

)(
BR

(t)
i (ai|s)− π′

i(ai|s)
)
.

Proof. Fix arbitrary i ∈ [N ], s ∈ S, and t ∈ [T ]. Next, note that the optimization problem in
(2.19) is a strongly concave optimization problem. By the first order conditions of constrained
optimality, for all π′

i ∈ Πi,(
Q̃

(t)
i (s)− τ∇πi(s)νi(s,BR

(t)
i (s))

)⊤
(BR

(t)
i (s)− π′

i(s)) ≥ 0.

Note that ∇πi(ai|s)νi(s, πi) = 1+ log(πi(ai|s)) for every ai ∈ Ai. Therefore, for every π
′
i ∈ Πi,∑

ai∈Ai

Q̃
(t)
i (s, ai)

(
BR

(t)
i (ai|s)− π′

i(ai|s)
)

≥ τ
∑
ai∈Ai

(
1 + log

(
BR

(t)
i (ai|s)

))(
BR

(t)
i (ai|s)− π′

i(ai|s)
)
.

The result follows by noting that
∑

ai∈Ai
BR

(t)
i (ai|s) =

∑
ai∈Ai

π′
i(ai|s) = 1.

Lemma 2.7.7. For any i ∈ [N ], s ∈ S, πi, π
′
i ∈ Πi,

νi(s, πi)− νi(s, π
′
i) ≥

1

2
∥πi(s)− π′

i(s)∥2 +
∑
ai∈Ai

(log(π′
i(ai|s))) (πi(ai|s)− π′

i(ai|s)) .
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Proof. Fix arbitrary i ∈ [N ], s ∈ S. To prove the lemma, we first claim that the mapping
P(Ai) ∋ π 7→ νi(s, π) is 1-strongly convex. This can be observed by computing the Hessian,
which is a RAi×Ai diagonal matrix with (ai, ai) entry as 1/π(ai|s). Since π(ai|s) ≤ 1, it
follows that the diagonal entries of the Hessian matrix are all greater than 1. Thus, νi(s, ·)
is 1-strongly convex function. The result follows by noting that for any κ-strongly convex
function f , f(y) ≥ f(x) +∇f(x)⊤(y − x) + κ

2
∥y − x∥2.

Lemma 2.7.8. For any i ∈ [N ], t ∈ [T ], a ∈ Aī(t), there exists 0 ≤ t∗ ≤ t such that

τ | log(π(t)

ī(t)
(a|s̄(t)))| ≤ 2∥Q̃(t∗)

ī(t)
(s̄(t))∥∞ + τ log(|Aī(t)|).

Proof. Recall that in Algorithm 3, at any time step t ∈ [T ], player ī(t) updates her policy at
time t+1 in the state s̄(t), while policies for other players and other states remain unchanged.
Fix arbitrary t ∈ [T ]. Let 0 ≤ t∗ ≤ t be the latest time step when player ī(t) updated its
policy in state s̄(t) before time t. Note that t∗ = 0 if t is the first time when player ī(t) is
updating its policy in state s̄(t). Naturally, ī(t) = ī(t

∗) and s̄(t) = s̄(t
∗). Consequently, for

every a ∈ Aī(t) ,

π
(t)

ī(t)
(a|s̄(t)) = BR

(t∗)

ī(t)
(a|s̄(t)) =

exp(Q̃
(t∗)

ī(t)
(s̄(t), a))∑

a′∈A
ī(t)

exp(Q̃
(t∗)

ī(t)
(s̄(t), a′))

.

Consequently, for every a ∈ Aī(t) ,

π
(t)

ī(t)
(a|s̄(t)) ≥

exp(Q̃
(t∗)

ī(t)
(s̄(t), a)/τ)

|Aī(t)| exp(Q̃
(t∗)

ī(t)
(s̄(t), ā)/τ)

=
1

|Aī(t)|
exp

((
Q̃

(t∗)

ī(t)
(s̄(t), a)− Q̃

(t∗)

ī(t)
(s̄(t), ā)

)
/τ
)
,

with ā ∈ argmax
a∈A

ī(t)

Q̃
(t∗)

ī(t)
(s̄(t), a) and a ∈ argmin

a∈A
ī(t)

Q̃
(t∗)

ī(t)
(s̄(t), a). Since π

(t)

ī(t)
(a|s̄(t)) ≤ 1, it follows

that for every a ∈ Aī(t) ,

| log(π(t)

ī(t)
(a|s̄(t)))| ≤ log(|Aī(t) |) +

1

τ

(
Q̃

(t∗)

ī(t)
(s̄(t), ā)− Q̃

(t∗)

ī(t)
(s̄(t), a)

)
≤ log(|Aī(t) |) +

2

τ
∥Q̃(t∗)

ī(t)
(s̄(t))∥∞.

Lemma 2.7.9. For any t ∈ [T ], i ∈ [N ], s ∈ S, it holds that ∥Q̃(t)
i (s)∥∞ ≤ C 1+τN log(Ā)

1−γ ,

where C := maxi∈[N ] ∥ui∥∞.
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Proof. First, we note that for any s ∈ S, π ∈ Π,

|Ṽi(s, π)| ≤ Eπ

 ∞∑
k=0

γk|ui(sk, ak)− τ
∑
j∈[N ]

νj(s
k, πj)|


≤ Eπ

[
∞∑
k=0

γk
(
|ui(sk, ak)|+ τN log(Ā)

)]
≤ C

1 + τN log(Ā)

(1− γ)
.

By (2.18), we note that for every i ∈ [N ], s ∈ S, ai ∈ Ai,

|Q̃(t)
i (s, ai)| ≤ E

a−i∼π−i

[
|ui(s, ai, a−i)− τ

∑
j∈[N ]

νj(s, πj)|+ γ
∑
s′∈S

P (s′|s, ai, a−i)
∣∣Ṽi(s′, π)∣∣]

≤ C E
a−i∼π−i

[
(1 + τN log(Ā))

(
1 +

γ

1− γ

)]
.

Proof of Lemma 2.5.5. (1) Fix t ∈ [T ]. To ease the notation, let π′
∗ := π

(t+1)

ī(t)
, π∗ := π

(t)

ī(t)
,

π−∗ := π
(t)

−ī(t) , ν∗ := νī(t) , Q∗ denote Q̃
(t)

ī(t)
, Q∗ denote Q̃

(t)

ī(t)
. Note that by (2.20) and (2.22),

∆
(t)

ī(t)
(s̄(t)) =

∑
a∈A

ī(t)

(
π′
∗(a|s̄(t))− π∗(a|s̄(t))

)
Q∗(s̄

(t), a) + τν∗(s̄
(t), π∗)− τν∗(s̄

(t), π′
∗)

≤
∑

a∈A
ī(t)

(
π′
∗(a|s̄(t))− π∗(a|s̄(t))

)
Q∗(s̄

(t), a) + τ
∑

a∈A
ī(t)

log(π∗(a|s̄(t)))
(
π∗(a|s̄(t))− π′

∗(a|s̄(t))
)

≤
∑

a∈A
ī(t)

(∣∣∣π′
∗(a|s̄(t))− π′

∗(a|s̄(t))
∣∣∣ · ∣∣∣Q∗(s̄

(t), a)− τ log(π∗(a|s̄(t)))
∣∣∣), (2.45)

where the first inequality follows from convexity of νi(s, ·). By Cauchy-Schwarz inequality
and noting that max

i∈[N ]
|Ai| ≤ Ā,

(2.45)≤
√
Ā max
a∈A

ī(t)

∣∣∣Q∗(s̄
(t), a)− τ log(π∗(a|s̄(t)))

∣∣∣ · ∥∥π′
∗(s̄

(t))− π∗(s̄
(t))
∥∥
2

≤
√
Ā

(
max
a∈A

ī(t)

∣∣∣Q∗(s̄
(t), a)

∣∣∣+ max
a∈A

ī(t)

τ
∣∣∣ log(π∗(a|s̄(t)))∣∣∣) ·

∥∥π′
∗(s̄

(t))− π∗(s̄
(t))
∥∥
2
.

Note that Lemma 2.7.8 implies that there exists t̂ ≤ t such that max
a∈A

ī(t)

τ

∣∣∣∣ log(π∗(a|s̄(t)))∣∣∣∣ ≤
2∥Q̃(t̂)

ī(t)
(s̄(t))∥∞ + τ log(Ā). Consequently, it follows that

∆
(t)

ī(t)
(s̄(t)) ≤

√
Ā
(
∥Q∗(s̄

(t))∥∞ + 2∥Q̃(t̂)

ī(t)
(s̄(t))∥∞ + τ log(Ā)

)
·
∥∥π′

∗(s̄
(t))− π∗(s̄

(t))
∥∥
2

≤4C
1 + τN log(Ā)

1− γ

√
Ā
∥∥π′

∗(s̄
(t))− π∗(s̄

(t))
∥∥
2
,
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where the last inequality follows from Lemma 2.7.9. This concludes the proof for Lemma
2.5.5 1).
(2) Here, we show that

T−1∑
t=1

∥π′
∗(s̄

(t))− π∗(s̄
(t))∥22 ≤

2

τ µ̄

(
Ψ̃(µ, π(T ))− Ψ̃(µ, π(0)) + αT

)
.

To see this, note that for any t ∈ [T ],

Ψ̃(µ, π(t+1))− Ψ̃(µ, π(t)) = Ψ̃(µ, π′
∗, π−∗)− Ψ̃(µ, π∗, π−∗) (2.46)

(i)

≥ Ṽī(t)(µ, π
′
∗, π−∗)− Ṽī(t)(µ, π∗, π−∗)− α

(ii)
=

1

1− γ

∑
s∈S

dπ
′
∗,π−∗
µ (s)

((
π′
∗(s)− π∗(s)

)⊤
Q∗(s) + τν∗(s, π∗)− τν∗(s, π

′
∗)

)
− α

(iii)
=

1

1− γ
dπ

′
∗,π−∗
µ (s̄(t))

(
(π′

∗(s̄
(t))− π∗(s̄

(t))⊤) ·Q∗(s̄
(t)) + τν∗(s̄

(t), π∗)− τν∗(s̄
(t), π′

∗)

)
− α,

where (i) follows from Lemma 2.7.5, (ii) follows from Lemma 2.5.3, and (iii) holds because

π′
∗(s) = π∗(s) for all s ̸= s̄(t). Next, from Algorithm 3, note that π′

∗(s̄
(t)) = BR

(t)

ī(t)
(s̄(t)).

Consequently, using Lemma 2.7.6, we obtain

(2.46) ≥ τd
π′
∗,π−∗
µ (s̄(t))

1− γ

(
log(π′

∗(s̄
(t)))⊤ ·

(
π′
∗(s̄

(t))− π∗(s̄
(t))
)

+ ν∗(s̄
(t), π∗)− ν∗(s̄

(t), π′
∗)
)
− α. (2.47)

Furthermore, using Lemma 2.7.7, we obtain

(2.47)≥ τ

2(1− γ)
d
π′
∗,π

′
−∗(s̄

(t))
µ ∥π′

∗(s̄
(t))− π∗(s̄

(t))∥22 − α

(a)

≥ τ µ̄

2
∥π′

∗(s̄
(t))− π∗(s̄

(t))∥22 − α,

where (a) follows from d
π
(t+1)
i ,π

(t)
−i

µ (s̄(t)) ≥ (1 − γ)µ̄. Summing the above inequality over all
t ∈ [T ] yields:

Ψ̃(µ, π(T ))− Ψ̃(µ, π(0)) =
∑
t∈[T ]

Ψ̃(µ, π(t+1))− Ψ̃(µ, π(t))

≥ τ µ̄

2

∑
t∈[T ]

∥π′
∗(s̄

(t))− π∗(s̄
(t))∥22 − αT.
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Finally to conclude Lemma 2.5.5 (2), note that∑
t∈[T ]

∥π′
∗(s̄

(t))− π∗(s̄
(t))∥22 ≤

2

τ µ̄

(
Ψ̃(µ, π(T ))− Ψ̃(µ, π(0)) + αT

)
≤ 2

τ µ̄

(
|Φ(µ, π(T ))− Φ(µ, π(0))|+ 2τN log(Ā)

1− γ
+ αT

)
,

where the last inequality follows by noting that for any π, π′ ∈ Π and any µ ∈ P(S),

|Ψ̃(µ, π)− Ψ̃(µ, π′)| ≤ |Φ(µ, π)− Φ(µ, π′)|

+ τ

∣∣∣∣∣Eπ
[ ∑
j∈[N ]
t∈N

γtνj(s
t, πj)

]∣∣∣∣∣+ τ

∣∣∣∣∣Eπ′

[ ∑
j∈[N ]
t∈N

γtνj(s
t, πj)

]∣∣∣∣∣
≤ |Φ(µ, π)− Φ(µ, π′)|+ 2τ

N log(Ā)

1− γ
.
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Chapter 3

Continuous-Time α-Potential Game

3.1 Introduction

3.1.1 Overview

Static potential games, introduced by Monderer and Shapley in [113], are non-cooperative
games where any player’s change in utility function upon unilaterally deviating from her
policy can be evaluated through the change of an auxiliary function called potential func-
tion. The introduction of the potential function is powerful as it simplifies the otherwise
challenging task of finding Nash equilibria in N -player non-cooperative games to optimizing
a single function. Static potential games and their variants have been a popular framework
for studying N -player static games, especially with heterogeneous players.

In the dynamic setting with Markovian state transitions and Markov policies, direct
generalization of the static potential game called Markov potential game is proposed in [105].
Unfortunately, most dynamic games are not Markov potential games. In fact, [101] shows
that even a Markov game where the game at each state is a static potential game may not be
a Markov potential game. In practice, Markov potential game framework imposes restrictive
assumptions for various applied problems, such as state transitions being of distributed types
for multi-agent robotics [94, 134, 135] and instantaneous reward functions being separable
for resource allocation [114].

Recently, a more general form of dynamic game called Markov α-potential game is pro-
posed by [71] (see also Chapter 2) for N -player non-cooperative Markov games with finite-
state, finite-action, and discrete-time state transition. The introduction of a parameter α
and an associated α-potential function enables capturing the interactions of players and
their heterogeneity. They establish the existence of α-potential function for discrete-time
Markov games, and show that maximizing the α-potential function yields an α-Nash equi-
librium (NE). Meanwhile, they identify several important classes of dynamic α-potential

0This chapter is mainly based on work [74] entitled An α-potential game framework for N -player dynamic
games, coauthored with Xin Guo (UC Berkeley) and Yufei Zhang (Imperial College London).



CHAPTER 3. CONTINUOUS-TIME α-POTENTIAL GAME 47

games. These present new potential applications, in addition to various potential games ex-
plored earlier in transportation systems [167], power networks [88], and multi-agent robotics
[94, 134, 135], along with more recent studies [101, 108, 131, 163, 49, 56, 106, 114, 67].

In this chapter, we propose and study general dynamic α-potential games, including
stochastic differential games with continuous state-action space, and with continuous-time
state transition. Similar to the α-potential game in the discrete-time setting in [71], this
general α-potential game framework reduces the challenging task of finding approximate NE
in a dynamic game to a (simpler) optimization problem of minimizing a single function.

In the framework of α-potential games, there are two key mathematical questions: finding
and optimizing the α-potential function, and analyzing the magnitude of α. In the discrete-
time setting with finite state and finite action, these two questions have been answered in
[71] by formulating a semi-infinite linear programming (SLP) problem such that its optimal
solution is the α-potential function and its minimum yields the α. However, this SLP
approach does not apply to continuous-time and arbitrary state-action spaces.

Instead, in this chapter, we adopt the tool of linear derivatives developed in [67] to
construct the α-potential function Φ, and to characterize α in terms of the magnitude of the
asymmetry of objective functions’ second-order derivatives. For stochastic differential games
where the state dynamic is a controlled diffusion, the α-potential function is expressed via
the sensitivity processes of the controlled diffusion, and α is explicitly characterized in terms
of the game structure including the number of players, the choice of strategy classes, and the
intensity of interactions and the level of heterogeneity among players. To analyze the α-NE,
our approach is to show that minimizing Φ is equivalent to solving a conditional McKean-
Vlasov control problem: we first develop the dynamic programming principle (DPP), and
then establish a verification theorem to construct a minimizer of the α-potential function Φ
based on solutions to an infinite-dimensional Hamilton-Jacobi-Bellman (HJB) equation. To
the best of our knowledge, this is the first result establishing a DPP for dynamic potential
games. Prior to our work, the only known approach for α-NE is the policy-gradient algorithm
in [71] for finite-state discrete-time α-potential games. Our approach is illustrated through
a linear-quadratic network game, where the α-NE and the associated HJB equation are
explicitly solved.

3.1.2 Outline of Main Results

α-potential games and approximate Nash equilibria. Consider a general N -player
game G characterized by G = ([N ], S, (Ai)i∈[N ], (Vi)i∈[N ]),

1where [N ] = {1, . . . , N} is the
set of players, S is the state space of the underlying dynamics, Ai is the set of admissible
strategies of player i, and Vi :

∏
i∈[N ] Ai → R is the total cost function of player i, with

Vi(a) being player i’s expected accumulated cost if the state dynamics starts with a fixed
initial state s0 ∈ S and all players take the strategy profile a . For each i ∈ [N ], player i
aims to minimize her objective function Vi over all admissible strategies in Ai.

1For notational simplicity, we do not write explicitly the dependence of G on the fixed initial state s0.
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Here we focus on a class of games called α-potential games, where there exists α ≥ 0 and
Φ : A(N) → R such that for all i ∈ [N ], ai, a

′
i ∈ Ai and a−i ∈ A(N)

−i ,

|Vi ((a′i, a−i))− Vi ((ai, a−i))− (Φ ((a′i, a−i))− Φ ((ai, a−i))) | ≤ α, (3.1)

with A(N) =
∏

i∈[N ] Ai the set of strategy profiles for all players, and A(N)
−i =

∏
j∈[N ]\{i}Aj

the set of strategy profiles of all players except player i. Such Φ is called an α-potential
function for the game G. In the case of α = 0, we simply call the game G a potential game
and Φ a potential function for G.

Equation (3.1) relaxes the notion of potential games in [113, 105] by introducing a param-
eter α. That is, a game G is an α-potential game if the change of a player’s objective function
upon her unilateral deviation from her strategy is equal to the change of the α-potential func-
tion up to an error α. This additional parameter α enables capturing important information
regarding the interaction between players’ state dynamics and strategies, beyond the number
of players which has been the primary focus of approximate Nash equilibrium approach such
as mean field games.

Similar to potential games, an α-potential game G has an important property: any min-
imizer of an α-potential function of G is an α-NE of the game G (Proposition 3.2.1). Propo-
sition 3.2.1 suggests three key components in applying the α-potential game framework to
analyze general non-cooperative games: constructing an α-potential function, characteriz-
ing (upper bounds of) the associated parameter α, and developing a solution technique for
minimizing the α-potential function over admissible strategy sets.

Characterizing general α-potential games. We start by constructing the α-potential
function and characterizing the associated parameter α for a given game G, where all players’
strategy classes are convex. Specifically, for each i ∈ [N ], denote by span(Ai) the vector
space of all linear combinations of strategies in Ai. The concept of linear derivative of Vi
with respect to Ai, introduced in [67] for arbitrary convex strategy classes, enables us to
establish Theorem 3.2.1: if the objective functions of a game G admit second-order linear
derivatives, then under some mild regularity conditions, for any fixed z ∈ A(N), the function

Φ(a) :=

∫ 1

0

N∑
j=1

δVj
δaj

(z + r(a − z ); aj − zj) dr (3.2)

is an α-potential function of G, with

α ≤ 2 sup
i∈[N ],a′i∈Ai,a ,a ′′∈A(N)

N∑
j=1

∣∣∣∣ δ2Viδaiδaj

(
a ; a′i, a

′′
j

)
− δ2Vj
δajδai

(
a ; a′′j , a

′
i

)∣∣∣∣ . (3.3)

This characterization generalizes existing results of potential games with finite-dimensional
strategy classes [113, 101, 84] to general dynamic games with arbitrary convex strategy
classes. In particular, it replaces the Fréchet derivatives used in earlier works with linear
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derivatives, without requiring a topological structure on A(N). Moreover, it quantifies the
performance of the α-potential function (3.2) in terms of the difference between the second-
order linear derivatives of the objective functions.

Constructing α-potential function for stochastic differential game. The main con-
tribution of this chapter is to develop the criteria (3.2) and (3.3) for stochastic differential
games in which the state dynamic is a controlled diffusion. Specifically, let T ∈ (0,∞),
let (Ω,F ,P) be a probability space supporting an m-dimensional Brownian motion W =
(W k)mk=1, and let F be the natural filtration of W . Let H2(Rn) be the space of Rn-valued
square integrable F-adapted processes, and for each i ∈ [N ], Ai be a convex subset of H2(Rn)
representing player i’s admissible controls. For each u ∈ A(N), let Xu be the associated state
process satisfying for all i ∈ [N ] and t ∈ [0, T ],

dXt,i = bi(t,Xt,u t)dt+
m∑
k=1

σik(t,Xt,u t)dW
k
t , X0,i = xi, (3.4)

where xi ∈ R is a given initial state, bi : [0, T ]× RNd × RNn → Rd and σi = (σi1, . . . , σim) :
[0, T ] × RNd × RNn → Rd×m are given functions. The objective function Vi : A(N) → R of
player i is

Vi(u) = E
[∫ T

0

fi(t,X
u
t ,u t) dt+ gi(X

u
T )

]
, (3.5)

where fi : [0, T ]×RNd×RNn → R and gi : RNd → R are given functions. Precise assumptions
on xi, bi, σi, fi and gi are given in Assumption 3.3.1.

We characterize the linear derivative of Vi and the function Φ in (3.2) through the sensi-
tivity processes of the state process with respect to controls (Theorem 3.3.1). In particular,
assuming 0 ∈ A(N), the function Φ (with z = 0) can be expressed as

Φ(u) =

∫ 1

0

N∑
i=1

E

[∫ T

0

(
Yru ,ui
t

ut,i

)⊤(
∂xfi
∂uifi

)
(t,Xru

t , ru t) dt+ (∂xgi)
⊤(Xru

T )Yru ,ui
T

]
dr, (3.6)

where for each u ∈ A(N) and u′i ∈ H2(Rn), the sensitivity process Yu ,u′i is the derivative
(in the L2 sense) of the state Xu when player i varies her control in the direction u′i, and
satisfies a controlled linear stochastic differential equation (as in (3.16)). See Theorem 3.3.1
for the expression of Φ with general A(N) for open-loop controls and see Theorem 3.4.1 for
the expression of Φ for closed-loop controls.

Quantifying α for stochastic differential game. Using the bound (3.3), we then quan-
tify the parameter α for the game (3.4)-(3.5) based on the structure of the game. A key
technical step is to characterize and estimate the second-order linear derivative of Vi through
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second-order sensitivity processes, representing the derivative of Yu ,u′i . Under suitable struc-
tural assumptions on the coefficients of (3.4), we establish precise estimates for these sen-
sitivity processes, and obtain the following upper bound (stated more precisely in Theorem
3.3.2): for all i, j ∈ [N ],∣∣∣∣ δ2Viδuiδuj

(
u ;u′i, u

′′
j

)
− δ2Vj
δujδui

(
u ;u′′j , u

′
i

)∣∣∣∣ ≤ CCf,g,N , (3.7)

where C ≥ 0 is a constant depending only on the state coefficients and time horizon, and
Cf,g,N is a constant depending explicitly on the number of players N and the sup-norms of
the partial derivatives of fi − fj and gi − gj.

This analysis of α shows its general dependence on game characteristics, including pos-
sibly asymmetric and heterogeneous forms of cost functions and state dynamics, and is not
limited to the scale of N as in the mean-field paradigm. To highlight this distinction, we
specialize the above bound (3.7) of α to two classes of stochastic games:

• For distributed games where players only interact through their cost functions and
not the state and control processes, we prove that if a static potential function can
be derived from the cost functions, then dynamics games are potential games (with
α = 0), regardless of the number of players (Example 3.3.2).

• For games with mean field type interactions, if each player’s dependence on others’
states and actions is solely through her empirical measures, then α is of the magnitude
O(1/N) as N → ∞ (Example 3.3.3). Note that α decays to zero as the number of
players increases, even with heterogeneity in state dynamics, in cost functions, and in
admissible strategy classes. This is in contrast to the classical mean field games with
homogeneous players; see Remark 3.3.3 for a more detailed comparison.

α-NE via a McKean-Vlasov control problem. We further develop a dynamic pro-
gramming approach to minimize the function Φ over A(N). The main difficulty is that the
objective (3.6) depends on the aggregated behavior of the state and sensitivity processes
with respect to r ∈ [0, 1], which acts as an additional noise independent of the Brownian
motion W . Meanwhile, the admissible controls in A(N) are adapted to a smaller filtration
F that depends only on W . To recover the dynamic programming principle, we embed the
optimization problem into a conditional McKean–Vlasov control problem. This is achieved
by treating r in (3.6) as a uniform random variable r independent of W , and expressing the
objective Φ(u) in terms of u and the conditional law of (Xru ,Yru ,u1 , . . . ,Yru ,uN , r) given
W . This approach allows us to embed the minimization of u 7→ Φ(u) into a control prob-
lem, where the state space is a subset of the Wasserstein space of probability measures
(Proposition 3.5.1). Moreover, by Itô’s formula along a flow of conditional measures, we
establish a verification theorem to construct a minimizer of Φ based on solutions to an
infinite-dimensional Hamilton-Jacobi-Bellman (HJB) equation (Theorem 3.5.1).
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A toy example of dynamic games on graph. We illustrate our results through a
simple linear-quadratic game on a undirected graph, whose the vertices represent players,
and edges indicate dependencies between them. We show that this game is an α-potential
game, and characterize α explicitly in terms of N the number of players, and qij the strength
and the degree of heterogeneous interaction between players i and j (see Section 3.6.1). We
further construct an α-NE of the game analytically through a system of ordinary differential
equations (Theorem 3.6.1). This is accomplished by solving the associated HJB equation for
the α-potential function (3.6) by utilizing the game’s linear-quadratic structure.

The asymptotic limit derived from our analysis allows for general asymmetric interactions
and heterogeneity among players, in contrast to existing works on the mean field approxima-
tion for both differential games (e.g., [99, 100, 32]) and games on graphs (e.g., [60, 97, 15]). It
shows that the α-potential game framework enables differentiating game characteristics and
player interactions which are hard to quantify under previous more restrictive game frame-
works, such as Markov potential games [105, 101, 108, 131, 49] and near potential games
[24, 27, 146, 145].

3.2 Analytical Framework for General α-Potential

Games

3.2.1 α-Potential Games and Approximate Nash Equilibria

This section introduces the mathematical framework for α-potential games, starting by some
basic notions for the game and associated strategies.

Consider a game G = ([N ], S, (Ai)i∈[N ], (Vi)i∈[N ]) defined as follows: [N ] = {1, . . . , N},
N ∈ N, is a finite set of players, S is a set representing the state space of the underlying
dynamics, Ai is a subset of a real vector space representing all admissible strategies of player
i, and A(N) =

∏
i∈[N ] Ai is the set of strategy profiles for all players. For each i ∈ [N ],

Vi : A(N) → R is the objective function of player i, where Vi(a) is player i’s expected cost
if the state dynamics starts with a fixed initial state s0 ∈ S and all players take the strategy
profile a ∈ A(N). For any i ∈ [N ], player i aims to minimize the objective function Vi
over all admissible strategies in Ai. We denote by A(N)

−i =
∏

j∈[N ]\{i}Aj the set of strategy

profiles of all players except player i, and by a and a−i a generic element of A(N) and A(N)
−i ,

respectively.
Note that this game framework includes static games, and discrete-time and continuous-

time dynamic games. Moreover, depending on the precise definitions of strategy classes, this
framework also accommodates stochastic differential games with either open-loop controls
in Section 3.3.1 or closed-loop controls in Section 3.4. The focus of this chapter is on a class
of games G called α-potential games, defined as follows.
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Definition 3.2.1 (α-potential game). Given a game G = ([N ], S, (Ai)i∈[N ], (Vi)i∈[N ]), if there

exists α ≥ 0 and Φ : A(N) → R such that for all i ∈ [N ], ai, a
′
i ∈ Ai and a−i ∈ A(N)

−i ,

|Vi ((a′i, a−i))− Vi ((ai, a−i))− (Φ ((a′i, a−i))− Φ ((ai, a−i))) | ≤ α, (3.8)

then we say G is an α-potential game, and Φ is an α-potential function for G. In the case
where α = 0, we simply call the game G a potential game and Φ a potential function for G.

Intuitively, a game G is an α-potential game if there exists an α-potential function such
that whenever one player unilaterally deviates from her strategy, the change of that player’s
objective function is equal to the change of the α-potential function up to an error α. This
definition generalizes the notion of potential games in [113] by allowing for a positive α.
Such a relaxation is essential for dynamic games, as many dynamic games that are not
potential games are, in fact, α-potential games for some α > 0; see [71] and also Sections
3.3.1. Indeed, it is clear that if α̂ := supi∈[N ],a∈A(N) |Vi(a)| < ∞, then G is a 2α̂-potential
game and a 2α̂-potential function Φ = 0.

For a given game G, there can be multiple parameters α satisfying the condition (3.8).
In [71], an α-potential game is defined with the optimal α determined by

α∗ = inf
Φ∈F

sup
i∈[N ],ai,a

′
i∈Ai,

a−i∈A
(N)
−i

|Vi ((a′i, a−i))− Vi ((ai, a−i))− (Φ ((a′i, a−i))− Φ ((ai, a−i))) |, (3.9)

where F contains suitable functions Φ : A(N) → R. For discrete games with finite states
and actions, [71] shows that selecting F as the set of uniformly equi-continuous functions on
Markov policies ensures a well-defined α∗ and also the existence of an α∗-potential function
within F .

However, in continuous-time games with continuous state and action spaces, computing
the optimal α∗ in (3.9) is challenging, and selecting a suitable set F for the existence of an α∗-
potential function remains unclear. Most critically, as shown in [71], having an appropriate
upper bound α of α∗ and an associated α-potential function Φ is sufficient for the key analysis.
Therefore, we adopt Definition 3.2.1, which frees us to focus on characterizing some upper
bound of α∗ in terms of the number of players, the set of admissible strategies, and the game
structure.

For an α-potential game, computing an approximate Nash equilibrium reduces to an
optimization problem. To see it, we first recall the solution concept of ε-Nash equilibrium.

Definition 3.2.2. For any ε ≥ 0, a strategy profile a = (ai)i∈[N ] ∈ A(N) is an ε-Nash
equilibrium of the game G if Vi ((ai, a−i)) ≤ Vi ((a

′
i, a−i)) + ε, for any i ∈ [N ], a′i ∈ Ai.

Definition 3.2.2 provides a unified definition of approximate Nash equilibrium for a general
game G. When G is a stochastic differential game and the set A(N) of admissible strategy
profiles contains the set of open-loop controls or closed-loop controls, Definition 3.2.2 is
consistent with the concepts of open-loop Nash equilibrium or closed-loop Nash equilibrium
described in [32, Chapter 2].
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The following proposition shows that an approximate Nash equilibrium of an α-potential
game can be obtained by optimizing its corresponding α-potential function. This is analogous
to static potential games with potential functions. The proof follows directly from Definitions
3.2.1 and 3.2.2 and hence is omitted.

Proposition 3.2.1. Let G be an α-potential game for some α and Φ be an α-potential
function. For each ε ≥ 0, if there exists a ∈ A(N) such that Φ(a) ≤ infa∈A(N) Φ(a) + ε, then
a is an (α + ε)-Nash equilibrium of G.

3.2.2 Characterization of α-Potential Games via Linear
Derivatives

Proposition 3.2.1 highlights the importance of explicitly characterizing an α-potential func-
tion for a given game and the parameter α.

For the special class of potential games (i.e., α = 0) with finite-dimensional strategy class
[113, 101, 84], it is well known that a game is a potential game if the objective functions are
twice continuously (Fréchet) differentiable in policy parameters and have symmetric second-
order derivatives. More precisely, consider a game G = ([N ], (Ai)i∈[N ], (Vi)i∈[N ]) where for
all i ∈ [N ], Ai is an interval. Suppose that for all i ∈ [N ], Vi : A(N) → R is twice
continuously differentiable. Then by [113, Theorem 4.5], G is a potential game if and only if
∂2aiajVi = ∂2ajaiVj for all i, j ∈ [N ], and a form of potential function is given.

In this section, we will provide an analytical framework to construct the parameter α and
the associated α-potential functions based on linear derivatives of the objective functions with
respect to strategies as introduced in [67]. Let us start by recalling the linear derivative of
a scalar-valued function with respect to unilateral deviations of strategies. For each i ∈ [N ],
we denote by span(Ai) the vector space of all linear combinations of strategies in Ai, i.e.,

span(Ai) =
{∑m

ℓ=1 cℓa
(ℓ)
i | cℓ ∈ R, a(ℓ)i ∈ Ai, for any l = 1, 2, · · · ,m, and m ∈ N

}
.

Definition 3.2.3. Let A(N) =
∏

i∈[N ] Ai be a convex set and f : A(N) → R. For each i ∈ [N ],

we say f has a linear derivative with respect to Ai, if there exists
δf
δai

: A(N)×span (Ai) → R,
such that for all a = (ai, a−i) ∈ A(N), δf

δai
(a; ·) is linear and

lim
ε↘0

f ((ai + ε (a′i − ai) , a−i))− f(a)

ε
=
δf

δai
(a; a′i − ai) , ∀a′i ∈ Ai. (3.10)

Moreover, for each i, j ∈ [N ], we say f has second-order linear derivatives with respect
to Ai ×Aj, if (i) for all k ∈ {i, j}, f has a linear derivative δf

δak
with respect to Ak, and (ii)

for all (k, ℓ) ∈ {(i, j), (j, i)}, there exists δ2f
δakδaℓ

: A(N)× span (Ak)× span (Aℓ) → R such that

for all a ∈ A(N), δ2f
δakδaℓ

(a, ·, ·) is bilinear and for all a′k ∈ span (Ak) ,
δ2f

δakδaℓ
(·; a′k, ·) is a linear

derivative of δf
δak

(·; a′k) with respect to Aℓ. We refer to δ2f
δaiδaj

and δ2f
δajδai

as second-order linear

derivatives of f with respect to Ai ×Aj.
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Remark 3.2.1. Linear differentiability, as defined in Definition 3.2.3, is weaker than Fréchet
or Gâteaux differentiability, as it avoids introducing a topology on the strategy classes Ai.

Recall that a function f : O ⊂ X → R defined on an open subset O of a locally
convex topological vector space X is Gâteaux differentiable if, for all u ∈ V , Df(u; v) =

limε→0
f(u+εv)−f(u)

ε
exists for all v ∈ V . If in addition (X, ∥ · ∥X) is a normed vector space,

X ∋ v 7→ Df(u; v) ∈ R is a bounded linear operator, and lim∥v∥X→0
|f(u+v)−f(u)−Df(u;v)|

∥v∥X
= 0,

then f is Fréchet differentiable. Note that both Fréchet and Gâteaux derivatives are defined
only in the interior of a set O, as their definitions require that u + εv remains within the
domain O for all sufficiently small ε. This necessitates a topological structure on O.

Definition 3.2.3 defines derivatives using convex combinations within the strategy class,
without the need of a topology. Therefore, it can be applied to analyze games with any convex
strategy class. Moreover, if f has a Gâteaux derivative Df with respect to Ai, then f also
has a linear derivative given by δf

δai
(a; a′i − ai) = Df(a; a′i − ai).

Note that Definition 3.2.3 generalizes the notion of linear derivative for functions of
Markov policies introduced in [67] to functions defined on arbitrary convex strategy classes.
It enables us to construct an α-potential function for a game G using the linear derivative of
its objective functions, with α bounded by the difference between the second-order linear
derivatives of the objective functions.

Theorem 3.2.1. Let G be a game whose set of strategy profiles A(N) is convex. Suppose that
for all i, j ∈ [N ], the objective function Vi has second-order linear derivatives with respect to
Ai×Aj such that for all z = (zj)j∈[N ] ∈ A(N), a = (aj)j∈[N ] ∈ A(N), a′i, ã

′
i ∈ Ai and a

′′
j ∈ Aj,

(1) sup
r,ε∈[0,1]

∣∣∣ δ2Viδaiδaj

(
z+ r (aε − z) ; a′i, a

′′
j

)∣∣∣ <∞, where aε := (ai + ε (ã′i − ai) , a−i);

(2) [0, 1]N ∋ ε 7→ δ2Vi
δaiaj

(
z+ ε · (a− z); a′i, a

′′
j

)
is continuous at 0 , where z + ε · (a − z) :=

(zi + εi (ai − zi))i∈[N ].

Fix z ∈ A(N) and define Φ : A(N) → R by

Φ(a) =

∫ 1

0

N∑
j=1

δVj
δaj

(z+ r(a− z); aj − zj) dr. (3.11)

Then Φ is an α-potential function of G with

α ≤ 2 sup
i∈[N ],a′i∈Ai,a,a′′∈A(N)

N∑
j=1

∣∣∣∣ δ2Viδaiδaj

(
a; a′i, a

′′
j

)
− δ2Vj
δajδai

(
a; a′′j , a

′
i

)∣∣∣∣ . (3.12)

Theorem 3.2.1 constructs an α-potential function using the linear derivatives of objective
functions, which exist for general strategy classes without requiring a topological structure.
The corresponding α is quantified explicitly in terms of the magnitude of the asymmetry of
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the second-order linear derivatives, and α = 0 recovers the symmetric case in these earlier
works [113, 101, 84]. The base-point action z ensures that z + r(a − z ) remains in A(N), so
that the linear derivatives are well-defined. The specific choice of z will not change the upper
bound of α, as (3.12) takes the supremum over all strategies, but it may lead to different
minima of α-potential functions Φ. The proof of Theorem 3.2.1 is given in Section 3.7.1.

The next proposition shows that under sufficient regularity, the partial derivative of Vi
and Φ are close given the α-potential function in (3.11):

Proposition 3.2.2. Suppose that for all i ∈ [N ], Ai is an open subset of an inner product
space, C := supj∈[N ],aj∈Aj

∥aj∥ < ∞, and the objective function Vi is twice continuously
Fréchet differentiable in Ai. Then for any i ∈ [N ], ai, a

′
i ∈ Ai, and a−i ∈ A−i,

|Vi ((a′i, a−i))− Vi ((ai, a−i))− (Φ ((a′i, a−i))− Φ ((ai, a−i)))| ≤ ã∥a′i − ai∥,

with α̃ ≤ C supi,j∈[N ],a∈A
∑N

j=1

∥∥∥∂2aiajVi (a)− ∂2ajaiVj (a)
∥∥∥.

The definition of α-potential game in (3.8) does not necessarily guarantee that the partial
derivative of Vi and the partial derivative of Φ are close. However, with Φ construct in (3.11),
Proposition 3.2.2 shows under sufficient regularity, the derivative of Vi and the derivative of
Φ are close, up to an error bounded by α̃, and α̃ is determined by the asymmetry in the
second-order derivatives of the value functions.

Existing literature in multi-agent reinforcement learning (MARL) on Markov potential
games (MPG) replies on the fact that the partial derivatives ∂aiVi and ∂aiΦ are identical in
an MPG. In α-potential games, Proposition 3.2.2 demonstrates that these partial derivatives
are close to each other, which can facilitate the regret analysis by allowing one to leverage
tools developed for MPGs while accounting for the approximation error introduced by the
discrepancy in first-order derivatives.

The α-potential function (3.11) involves aggregating all players’ strategies and the deriva-
tives of their objective functions linearly through the parameter r. When the objective
functions are sufficiently regular, analogue α-potential functions can be constructed through
nonlinear aggregation of all players’ strategies. Indeed, we have

Proposition 3.2.3. Suppose that for all i ∈ [N ], Ai is an open subset of an inner product
space, and the objective function Vi is continuously Fréchet differentiable in Ai. Fix z ∈ A(N),
and for all i ∈ [N ], let pi : [0, 1]×Ai → Ai be a continuously differentiable reparameterization
of Ai such that for all ai ∈ Ai, pi(0, ai) = zi and pi(1, ai) = ai. Then one can define

Φ(a) =

∫ 1

0

N∑
i=1

⟨∂aiVi(p(r,a)), ∂rpi(r, ai)⟩ dr, (3.13)

where p(r,a) := (pi(r, ai))i∈[N ], and ∂aiVi is the Fréchet derivative of Vi.

Consequently, if we assume further regularity of (Vi)i∈[N ], the corresponding α for (3.13)
can be quantified in terms of the asymmetry in second-order derivatives of objective functions
and the derivatives of the parameterization p as in Theorem 3.2.1.
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It is worth noting that this α-potential function (3.13) extends the characterization of
potential functions for static games with finite-dimensional strategy spaces as established in
[113, Theorem 4.5], and coincides the expression (3.11) by setting δVi

δai
(a ; a′i) = ⟨∂aiVi(a), a′i⟩

and pi(r, ai) = zi + r(ai − zi). When the game G is a potential game (i.e., α = 0), any
potential function is given by (3.13) (or (3.11)) up to an additive constant, as all potential
functions share the same gradient and are therefore equivalent up to a constant.

For ease of exposition and clarity, we focus on the α-potential function given in (3.11)
in the subsequent analysis. As we will see, for stochastic differential games, the adoption of
linear derivatives in (3.11) simplifies the analysis and avoids the tedious verification of the
Fréchet differentiability of (Vi)i∈[N ]. Moreover, minimizing (3.11) will be shown as a class of
conditional McKean-Vlasov control problem.

3.3 Open-Loop Stochastic Differential Games

This section characterizes α-potential function (3.11) given in Theorem 3.2.1 for stochastic
differential games whose state dynamics is a controlled diffusion with open-loop controls.
Under suitable regularity conditions, the linear derivative of objective functions are charac-
terized through the sensitivity processes of the state dynamics with respect to controls.

Let T ∈ (0,∞), let (Ω,F ,P) be a complete probability space on which an m-dimensional
Brownian motion W = (Wt)t≥0 is defined, and let F be the P-completion of the filtration
generated by W . For each p ≥ 1 and Euclidean space (E, | · |), let Sp(E) be the space of
E-valued F-progressively measurable processes X : Ω × [0, T ] → E satisfying ∥X∥Sp(E) =
E[sups∈[0,T ] |Xs|p]1/p < ∞, and let Hp(E) be the space of E-valued F-progressively measur-

able processes X : Ω × [0, T ] → E satisfying ∥X∥Hp(E) = E[
∫ T
0
|Xs|pds]1/p < ∞. With a

slight abuse of notation, for any m,n ∈ N, we identify the product spaces Sp(Rn)m and
Hp(Rn)m with Sp(Rmn) and Hp(Rmn), respectively.

Consider the open-loop differential game Gop defined as follows: let [N ] = {1, . . . , N}, and
for each i ∈ [N ], let Ai ⊂ Rn be a convex set, and let Ai be the set of processes ui ∈ H2(Rn)
taking values in Ai, representing the set of admissible (open-loop) controls of player i. For
each u = (ui)i∈[N ] ∈ H2(RNn), let Xu = (Xu

i )
N
i=1 be the associated state process governed

by the following dynamics: for all i ∈ [N ] and t ∈ [0, T ],

dXt,i = bi(t,Xt,u t)dt+
m∑
k=1

σik(t,Xt,u t)dW
k
t , X0,i = xi, (3.14)

where xi ∈ Rd is a given initial state, bi : [0, T ]× RNd × RNn → Rd and σi = (σi1, . . . , σim) :
[0, T ] × RNd × RNn → Rd×m are given measurable functions, and W = (W k)mk=1 is an m-
dimensional F-Brownian motion on the space (Ω,F ,P). The objective function Vi : A(N) ⊂
H2(RNn) → R of player i is given by

Vi(u) = E
[∫ T

0

fi(t,X
u
t ,u t) dt+ gi(X

u
T )

]
, (3.15)
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where fi : [0, T ]×RNd×RNn → R and gi : RNd → R are given measurable functions. Player
i aims to minimize (3.15) over all admissible controls in Ai.

We impose the following regularity condition on the coefficients of (3.14)-(3.15). It guar-
antees for each u ∈ H2(RNn), (3.14) admits a unique strong solution Xu ∈ S2(RNd), and
(3.15) is well-defined.

Assumption 3.3.1. For all i ∈ [N ], Ai is a nonempty convex subset of Rn.

(1) For all t ∈ [0, T ], (x, u) 7→ (bi(t, x, u), σi(t, x, u), fi(t, x, u), gi(x)) is twice continuously
differentiable.

(2) For all φ ∈ {bi, σi}, supt∈[0,T ] |φ(t, 0, 0)| < ∞, and (x, u) 7→ φ(t, x, u) has bounded first
and second derivatives (uniformly in t).

(3) supt∈[0,T ](|fi(t, 0, 0)|+|(∂(x,u)fi)(t, 0, 0)|) <∞, and (x, u) 7→ (fi(t, x, u), gi(x)) has bounded
second derivatives (uniformly in t).

We proceed to characterize the α-potential function (3.11) for the game Gop. This is
achieved by expressing the linear derivatives of the objective function (3.15) using the sensi-
tivity processes of the state dynamics (3.14). In this following, we present only the first-order
linear derivatives, as these are sufficient to characterize the α-potential function. The second-
order linear derivatives are given in Section 3.3.1, which will be used to quantify the constant
α defined in (3.12).

We start by introducing the sensitivity of the controlled state with respect to a single
player’s control. For each u ∈ H2(RNn), let Xu be the state process satisfying (3.14). For
each h ∈ [N ] and u′h ∈ H2(Rn), define Yu ,u′h ∈ S2(RNd) as the solution of the following
dynamics: for all t ∈ [0, T ] and i ∈ [N ],

dY h
t,i = ((∂xbi) (t,X

u
t ,u t)Y

h
t + (∂uhbi) (t,X

u
t ,u t)u

′
t,h)dt

+
m∑
k=1

(
(∂xσik) (t,X

u
t ,u t)Y

h
t + (∂uhσik) (t,X

u
t ,u t)u

′
t,h

)
dW k

t , Y h
0,i = 0.

(3.16)

By [31, Lemma 4.7], for all u′h ∈ H2(Rn), limε↘0 E
[
supt∈[0,T ]

∣∣∣1ε(Xuε

t −Xu
t )−Y

u ,u′h
t

∣∣∣2 ] = 0,

where uε = (uh+ εu′h, u−h) for all ε ∈ (0, 1). That is, in the L2 sense, Yu ,u′h is the derivative
of the controlled state Xu when player h varies her control in the direction u′h.

Now, the linear derivatives of Vi in (3.15) can be represented using the sensitivity pro-
cesses given by (3.16). Indeed, for all i, h ∈ [N ], define the map δVi

δuh
: A(N) ×H2(Rn) → R

such that for all u ∈ A(N) and u′h ∈ H2(Rn),

δVi
δuh

(u ;u′h) := E

[∫ T

0

(
Y

u ,u′h
t

u′t,h

)⊤(
∂xfi
∂uhfi

)
(t,Xu

t ,u t) dt+ (∂xgi)
⊤(Xu

T )Y
u ,u′h
T

]
. (3.17)
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By the convexity of Ah and [31, Lemma 4.8], limε↘0
Vi(u

ε)−Vi(u)
ε

= δVi
δui

(u ;u′h − uh), for all

u′h ∈ Ah, where uε = (uh + ε(u′h − uh), u−h) for all ε ∈ (0, 1). That is, δVi
δuh

is the linear
derivative of Vi with respect to Ah.

Using the expression (3.17) of ( δVi
δui

)i∈[N ], the following theorem characterizes the α-
potential function for the open-loop differential game Gop.

Theorem 3.3.1. Consider the game Gop defined by (3.14)-(3.15). Suppose Assumption
3.3.1 holds. For any fixed z = (zi)i∈[N ] ∈ A(N), the function Φ : A(N) → R in (3.11) can be
expressed as

Φ(u) =

∫ 1

0

N∑
i=1

E

[∫ T

0

(
Yur,ui−zi
t

ut,i − zt,i

)⊤(
∂xfi
∂uifi

)
(t,Xur

t ,u
r
t ) dt+ (∂xgi)

⊤(Xur

T )Yur,ui−zi
T

]
dr

(3.18)

with ur := z+ r(u− z).

The expression (3.18) follows directly from (3.11) for Φ(u) and (3.17) for δVi
δui

, by substi-
tuting h with i, u with z + r(u − z ), and u′h with ui − zi.

The α-potential function in (3.18) can be alternatively expressed using backward stochas-
tic differential equations (BSDEs). The proof follows directly from [31, Corollary 4.11].

Proposition 3.3.1. Under the setting of Theorem 3.3.1, Φ defined in (3.18) can be equiva-
lently written as

Φ(u) =

∫ 1

0

N∑
i=1

E
[∫ T

0

(∂uiHi)⊤(t,Xur

t ,u
r
t ,G

i,ur

t ,Hi,ur

t )(ut,i − zt,i)dt

]
dr, (3.19)

with ur := z+ r(u− z), where for each i ∈ [N ],

Hi(t, x, u, g, h) := b⊤(t, x, u)g+ tr
(
(σσ⊤)(t, x, u)h

)
+ fi(t, x, u)

with b = vcat(b1, . . . , bN) and σ = vcat(σ1, . . . , σN),
2and for each u ∈ H2(RNn), (Gi,u,Hi,u) ∈

S2(RNd)×H2(RNd×m) satisfies

dGi
t = −(∂xHi)(t,Xu

t ,ut,G
i
t,H

i
t)dt+Hi

tdWt, ∀t ∈ [0, T ]; Gi
T = (∂xgi)(X

u
T ).

In the sequel, we adopt the representation (3.18) of α-potential function in terms of the
sensitivity processes. A detailed exploration of the BSDE approach for α-potential games is
left for future work.

2We denote by vcat(A1, . . . , AN ) := (A⊤
1 , . . . , A

⊤
N )⊤ the vertical concentration of matrices Ai ∈ Rmi×n,

1 ≤ i ≤ N .
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3.3.1 Quantifying α for open-loop stochastic differential game

In this section, we quantify α in (3.12) for stochastic differential games based on the structure
of the game. The analysis relies on characterizing the second-order derivatives of objective
functions by utilizing the second-order sensitivity of the state dynamics with respect to the
controls.

Let Gop be the differential game defined in Section 3.3. For ease of exposition, in this
section, we assume that each player has one-dimensional state and control processes, with
the drift of (3.14) depending linearly on the control and the diffusion of (3.14) being indepen-
dent of both the state and control. Similar analysis can be extended to sufficiently regular
nonlinear drift and diffusion coefficients in a multidimensional setting. More precisely, for
each u = (ui)i∈[N ] ∈ H2(RN), let Xu = (Xu

i )
N
i=1 ∈ S2(RN) be the associated state process

governed by the following dynamics: for all i ∈ [N ] and t ∈ [0, T ],

dXt,i = (bi(t,Xt,i,Xt) + ut,i) dt+ σi(t)dW
i
t , X0,i = xi, (3.20)

where xi ∈ R, bi : [0, T ]×R×RN → R is a given sufficiently regular function, σi : [0, T ] → R
is a given measurable function, and W = (W i)i∈[N ] is an N -dimensional F-Brownian motion.
Let A(N) ⊂ H2(RN) be a nonempty convex set, representing the joint control profiles of all
players. Player i’s objective function Vi : A(N) → R is given as in (3.15):

Vi(u) = E
[∫ T

0

fi(t,X
u
t ,u t) dt+ gi(X

u
T )

]
, (3.21)

where fi : [0, T ]× RN × RN → R and gi : RN → R are given measurable functions.
Note that in (3.20), we have expressed the dependence of bi on the private state Xu

i and
the population state Xu separately. This separation allows for specifying the structure of the
drift coefficient. To this end, let F 0,2([0, T ]×R×RN ;R) be the vector space of measurable
functions ψ : [0, T ]× R× RN → R such that

(1) for all t ∈ [0, T ], (x, y) 7→ ψ(t, x, y) is twice continuously differentiable,

(2) there exists Lψ, Lψy ≥ 0 such that for all (t, x, y) ∈ [0, T ] × R × RN and i, j ∈ [N ],
|ψ(t, 0, 0)| ≤ Lψ, |(∂xψ)(t, x, y)| ≤ Lψ, |(∂2xxψ)(t, x, y)| ≤ Lψ, |(∂yiψ)(t, x, y)| ≤ Lψy /N ,
|(∂2xyiψ)(t, x, y)| ≤ Lψy /N , and |(∂2yiyjψ)(t, x, y)| ≤

1
N
Lψy1i=j +

1
N2L

ψ
y1i ̸=j.

For any ψ = (ψi)i∈[N ] ∈ F 0,2([0, T ] × R × RN ;R)N , we write Lψ = maxi∈[N ] L
ψi and Lψy =

maxi∈[N ] L
ψi
y .

In the sequel, we impose the following regularity conditions on the coefficients of (3.20)-
(3.21).

Assumption 3.3.2. For all i ∈ [N ], bi ∈ F 0,2([0, T ]× R× RN ;R), σi ∈ L∞([0, T ];R), and
fi and gi satisfy the conditions in Assumption 3.3.1(3).
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Remark 3.3.1. For each i ∈ [N ], the condition bi ∈ F 0,2([0, T ]×R×RN ;R) implies the par-
tial derivatives of y 7→ bi(t, x, y) admit explicit decay rates in terms of N . This assumption
naturally holds if each player’s state depends on the empirical measure of the joint state pro-
cess, i.e., the mean field interaction. To see it, suppose that bi(t, x, y) = h

(
t, x, 1

N

∑N
j=1 δyj

)
with (t, x, y) ∈ [0, T ] × R × RN , for a measurable function h : [0, T ] × R × P2(R) → R,
where P2(R) is the space of probability measures on R with second moments. If (x, µ) 7→
h(t, x, µ) is sufficiently regular, then by [32, Propositions 5.35 and 5.91], (∂yibi)(t, x, y) =
1
N
(∂µh)(t, x,

1
N

∑N
j=1 δyj)(yi), (∂

2
xyi
bi)(t, x, y) =

1
N
(∂µ∂xh)(t, x,

1
N

∑N
j=1 δyj)(yi), and

(∂2yiyjbi)(t, x, y) =
1

N
(∂v∂µh)

(
t, x,

1

N

N∑
ℓ=1

δyℓ

)
(yi)δi,j +

1

N2
(∂2µh)

(
t, x,

1

N

N∑
ℓ=1

δyℓ

)
(yi, yj),

where (∂µh)(t, x, µ)(·) (resp. (∂µ∂xh)(t, x, µ)(·)) is Lions derivative of µ 7→ h(t, x, µ) (resp.
µ 7→ (∂xh)(t, x, µ)), (∂v∂µh)(t, x, µ)(·) is the derivative of v 7→ (∂µh)(t, x, µ)(v), and
(∂2µh)(t, x, µ)(v, ·) is the Lions derivative of µ 7→ (∂µh)(t, x, µ)(v). Hence if ∂µh, ∂µ∂xh,
∂v∂µh and ∂2µh are continuous and uniformly bounded, then bi ∈ F 0,2([0, T ] × R × RN ;R)
with a constant Lbiy depending on the upper bounds of the Lions derivatives but independent
of N .

The dependence of the constant Lby = maxi∈[N ] L
bi
y on N reflects the degree of coupling

among all players’ state dynamics. For instance, if Lby remains bounded as N → ∞, then
the state dynamics can have mean field type interactions. Alternatively, if Lby = 0, then all
players’ states are decoupled.

To quantify the magnitude of the asymmetry of the second-order linear derivatives of
objective functions (3.21), hence α in (3.12), we characterize the linear derivatives using the
sensitivity processes of (3.20). Observe that for the state dynamics (3.20), the dynamics
(3.16) for the first-order sensitivity process Yu ,u′h ∈ S2(RN) simplifies into for all t ∈ [0, T ],

dY h
t,i =

[
(∂xbi)(t,X

u
t,i,X

u
t )Y

h
t,i +

N∑
j=1

(∂yjbi)(t,X
u
t,i,X

u
t )Y

h
t,j + δh,iu

′
t,h

]
dt, Y h

0,i = 0; ∀i ∈ [N ],

(3.22)

where δi,j denotes the Kronecker delta such that δi,j = 0 if i = j and 0 otherwise. We now
characterize the second-order sensitivity of the state process with respect to the changes in
two players’ controls. For each h, ℓ ∈ [N ] with h ̸= ℓ, and each u′h, u

′′
ℓ ∈ H4(R), define

Zu ,u′h,u
′′
ℓ ∈ S2(RN) as the solution of the following dynamics: for all i ∈ [N ] and t ∈ [0, T ],

dZh,ℓ
t,i =

[
(∂xbi)(t,X

u
t,i,X

u
t )Z

h,ℓ
t,i +

N∑
j=1

(∂yjbi)(t,X
u
t,i,X

u
t )Z

h,ℓ
t,j + f

u ,u′h,u
′′
ℓ

t,i

]
dt, Zh,ℓ

0,i = 0,

(3.23)
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where f
u ,u′h,u

′′
ℓ

i : Ω× [0, T ] → R is defined by

f
u ,u′h,u

′′
ℓ

t,i :=

(
Y

u ,u′h
t,i

Y
u ,u′h
t

)⊤(
∂2xxbi ∂2xybi
∂2yxbi ∂2yybi

)
(t,Xu

t,i,X
u
t )

(
Y

u ,u′′ℓ
t,i

Y
u ,u′′ℓ
t

)
, (3.24)

and Yu ,u′h and Yu ,u′′ℓ are defined as in (3.22). Similar arguments as that for [31, Lemma 4.7]

show that for all u′h, u
′′
ℓ ∈ H4(R), limε↘0 E

[
supt∈[0,T ]

∣∣∣1ε(Yuε,u′h
t −Y

u ,u′h
t )− Z

u ,u′h,u
′′
ℓ

t

∣∣∣2] = 0,

where uε = (uℓ + εu′′ℓ , u−ℓ) for all ε ∈ (0, 1). That is, Zu ,u′h,u
′′
ℓ is the second-order derivative

of the state Xu when player h first varies her control in the direction u′h, and then player ℓ
varies her control in the direction u′′ℓ .

Now, the linear derivatives of Vi in (3.21) can be represented using the sensitivity pro-
cesses satisfying (3.22) and (3.23). The first order linear derivative δVi

δuh
of Vi is given

as in (3.17). For the second-order linear derivatives, for all h, ℓ ∈ [N ], define the map
δ2Vi
δuhδuℓ

: A(N) ×H4(R)×H4(R) → R such that for all u ∈ A(N) and u′h, u
′′
ℓ ∈ H4(R4),

δ2Vi
δuhδuℓ

(u ;u′h, u
′′
ℓ ) = E

[∫ T

0

(Yu ,u′h
t

u′t,h

)⊤(
∂2xxfi ∂2xuℓfi
∂2uhxfi ∂2uhuℓfi

)(
t,Xu

t ,u t

(Yu ,u′′ℓ
t

u′′t,ℓ

)

+ (∂xfi)
⊤ (t,Xu

t ,u t)Z
u ,u′h,u

′′
ℓ

t

)
dt

]

+ E
[(

Y
u ,u′h
T

)⊤ (
∂2xxgi

)
(Xu

T )Y
u ,u′′ℓ
T + (∂xgi)

⊤ (Xu
T )Z

u ,u′h,u
′′
ℓ

T

]
.

(3.25)

Consequently, if Ah and Aℓ are convex subsets of H4(R), then by [31, Lemma 4.8],

lim
ε↘0

1

ε

( δVi
δuh

(uε;u′h)−
δVi
δuh

(u ;u′h)
)
=

δ2Vi
δuhδuℓ

(u ;u′h, u
′′
ℓ − uℓ)

for all u′h ∈ Ah and u′′ℓ ∈ Aℓ, where uε = (uℓ + ε(u′′ℓ − uℓ), u−ℓ) for all ε ∈ (0, 1). That is,
δ2Vi
δuhδuℓ

(u ;u′h, ·) is the linear derivative of u 7→ δVi
δuh

(u ;u′h) with respect to Aℓ, and hence the
second-order linear derivative of Vi.

Before stating the theorem, we introduce a few constants that will be used in the analysis.
For any i, j ∈ [N ] with i ̸= j, we define ∆f

i,j = fi− fj, ∆
g
i,j = gi− gj, as well as the following

three constants Ci,j
V,1 C

i,j
V,2 C

i,j
V,3, depending on the upper bounds of the first- and second-order

derivatives of ∆f
i,j and ∆g

i,j in (x, u):

Ci,j
V,1 := ∥∂2xixj∆

f
i,j∥L∞ + ∥∂2xiuj∆

f
i,j∥L∞ + ∥∂2uixj∆

f
i,j∥L∞ + ∥∂2uiuj∆

f
i,j∥L∞ + ∥∂2xixj∆

g
i,j∥L∞ ,

(3.26)
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Ci,j
V,2 :=

∑
ℓ∈[N ]\{j}

∥∂2uixℓ∆
f
i,j∥L∞ +

∑
h∈[N ]\{i}

∥∂xhuj∆
f
i,j∥L∞

+
∑
h∈{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2 + |(∂xh∆

g
i,j)(0)|

)
+

∑
h∈{i,j},ℓ∈[N ]

(
∥∂2xhxℓ∆

f
i,j∥L∞ + ∥∂2xhuℓ∆

f
i,j∥L∞ + ∥∂2xhxℓ∆

g
i,j∥L∞

)
, (3.27)

Ci,j
V,3 :=

∑
h∈[N ]\{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2 + |(∂xh∆

g
i,j)(0)|

)
+

∑
h∈[N ]\{i,j}
ℓ∈[N ]\{i,j}

(
∥∂2xhxℓ∆

f
i,j∥L∞ + ∥∂2xhuℓ∆

f
i,j∥L∞ + ∥∂2xhxℓ∆

g
i,j∥L∞

)
, (3.28)

where ∥ · ∥∞ denotes the sup-norm norm.
We are ready to present the upper bound of the α defined in (3.12) for general cost

functions (fi, gi)i∈[N ], without imposing any structural assumptions.

Theorem 3.3.2. Suppose Assumption 3.3.2 holds. Then for all u ∈ H2(RN) and u′i, u
′′
j ∈

H4(R), ∣∣∣∣ δ2Viδuiδuj

(
u;u′i, u

′′
j

)
− δ2Vj
δujδui

(
u;u′′j , u

′
i

)∣∣∣∣
≤ C∥u′i∥H4(R)∥u′′j∥H4(R)

(
Ci,j
V,1 + Lby

(
1

N
Ci,j
V,2 +

1

N2
Ci,j
V,3

))
,

(3.29)

where the constant Lby represents the coupling in the state dynamics (see Remark 3.3.1),

the constants Ci,j
V,1, C

i,j
V,2 and Ci,j

V,3, defined in (3.26), (3.27) and (3.28), respectively, and the

constant C ≥ 0 depends only on the upper bounds of T , maxi∈[N ] |xi|, maxi∈[N ] ∥σi∥L2, Lb

and Lby.
Consequently, if supi∈[N ],ui∈Ai

∥ui∥H4(R) <∞ and 0 ∈ Ai, then Gop is an α-potential game
with an α-potential function Φ given by (3.18) with z = 0, and a constant α satisfying

α ≤ Cmax
i∈[N ]

∑
j∈[N ]\{i}

(
Ci,j
V,1 + Lby

( 1
N
Ci,j
V,2 +

1

N2
Ci,j
V,3

))
(3.30)

for a constant C ≥ 0 independent of the cost functions.

Remark 3.3.2. Since the minimizer of the function Φ given in Theorem 3.5.1 is an ϵ-Nash
equilibrium of the game (3.20)-(3.21), with ϵ ≤ α in (3.30). One can construct approximate
Nash equilibria for N-player games without the symmetry and homogeneity conditions among
players imposed for mean field approximations [32]. Moreover, the upper bound (3.30) is ex-
pressed in terms of the number of players, the strength of interactions, and the degree of
heterogeneity among the players, proving rich insights for assessing the approximate Nash
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equilibria in relation to the game structure, compared to the classical mean field approxima-
tion, which typically bounds the approximation error solely based on the number of players
N .

The condition supi∈[N ],ui∈Ai
∥ui∥H4(R) < ∞ for the estimate (3.30) can be relaxed to

supi∈[N ],ui∈Ai
∥ui∥H2(R) < ∞ if the state dynamics (3.20) is decoupled, i.e., if the drift bi

is independent of (Xj)j ̸=i; see Example 3.3.2 and Section 3.6. Indeed, the appearance of

∥u′i∥H4 and ∥u′′j∥H4 in the estimate (3.29) is due to the L2-estimate of the process Zu,u′i,u
′′
j ;

see Proposition 3.7.5 and (3.86). If the state dynamics is decoupled, then Zu,u′i,u
′′
j = 0 for

i ̸= j, and the additional condition on the ∥ ·∥H4(R) is unnecessary. The uniform integrability

condition supi∈[N ],ui∈Ai
∥ui∥H2(R) < ∞ comes from estimating the ∥ · ∥H2(R)-norm of Yu,u′i

uniformly over u′i ∈ Ai and i ∈ [N ]. This highlights the dependence of α on the choice of ad-
missible control classes (Ai)i∈[N ]. This dependence may be useful for analyzing the sensitivity
of α-NE with respect to design of game strategies.

A similar estimate of α can be established if the drift coefficient in (3.20) depends non-
linearly on ui. In such cases, the sensitivity equations (3.22) and (3.23) will incorporate the
derivatives of the drift coefficient with respect to ui, and the constant C in Theorem 3.3.2
will depend on the upper bounds of these derivatives.

The proof of Theorem 3.3.2 is given in Section 3.7.2. The essential step is to establish
precise estimates of the sensitivity processes Yu ,u′h and Zu ,u′h,u

′′
ℓ in terms of the number of

players N and the indices h, ℓ. These estimates quantify the dependence of each player’s
state process on the changes in other players’ controls, with a constant depending explicitly
on the coupling strength Lby in the drift coefficients (see Remark 3.3.1) and the number of
players.

3.3.2 Examples of open-loop α-potential games

Distributed games. Theorem 3.3.2 simplifies the task of quantifying the constant α in
(3.12) to bounding the difference of derivatives of the cost functions. For instance, the
following example presents a special case where the state dynamics (3.20) are decoupled.
It shows that under suitable conditions of the cost functions, a distributed open-loop game
(3.20)-(3.21) is an α-potential game, with α decaying to 0 as the number of players N → ∞.
It generalizes [66, Theorem 3.2] by allowing the cost functions fi and fj to have asymmetric
second-order derivatives.

Example 3.3.1 (Distributed games). Consider the game Gop defined as in (3.20)-(3.21).
Suppose Assumption 3.3.2 holds, for all i ∈ [N ], (t, x, y) 7→ bi(t, x, y) is independent of y, and
there exists L,Lc ≥ 0 and β ≥ 1/2 such that supi∈[N ],u∈Ai

∥u∥H4(R) ≤ L, maxi∈[N ] E[|ξi|2] ≤ L,

maxi∈[N ] L
bi ≤ L, maxi∈[N ] ∥σi∥L∞ ≤ L, and for all i, j ∈ [N ], ∆f

i,j := fi − fj and ∆g
i,j :=

gi− gj satisfy for all (t, x, u) ∈ [0, T ]×RN ×RN , |(∂2xixj∆
f
i,j)(t, x, u)|+ |(∂2xiuj∆

f
i,j)(t, x, u)|+

|(∂2uixj∆
f
i,j)(t, x, u)| + |(∂2uiuj∆

f
i,j)(t, x, u)| + |(∂2xixj∆

g
i,j)(x)| ≤ LcN−2β. Then Gop is an α-
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potential game with α ≤ CLcN−(2β−1), where C ≥ 0 is a constant independent of N and
β.

Example 3.3.1 follows directly from Theorems 3.2.1 and 3.3.2 (with Lby = 0).
The following example illustrates a special case where the distributed game is in fact a

potential game (α = 0). As a result, the minimizer of the potential function Φ given in
Theorem 3.5.1 is a Nash equilibrium of the N -player game (3.20)-(3.21).

Example 3.3.2 (Distributed games with α = 0). Consider the game Gop defined as in
(3.20)-(3.21). Suppose Assumption 3.3.2 holds, and for all i ∈ [N ], (t, x, y) 7→ bi(t, x, y) is
independent of y, and fi and gi are of the form

fi(t, x, u) = ci(t, xi, ui) + f̃i
(
t, xi, ui, µ̄(x,u)−i

)
, gi(x) = ḡi(xi) + g̃i

(
xi, µ̄x−i

)
. (3.31)

where µ̄(x,u)−i
= 1

N−1

∑
j∈IN\{i} δ(xj ,uj), µ̄x−i

= 1
N−1

∑
j∈IN\{i} δxj , and ci : [0, T ]×R×R → R,

f̃i : [0, T ] × R × R × P2(R × R) → R, ḡi : R → R, and g̃i : R × P2(R) → R are twice
continuously differentiable. Assume further that there exist twice continuously differentiable
functions F : [0, T ] × P2(R × R) → R and G : P2(R) → R such that for all i ∈ [N ],
(t, x, u) ∈ [0, T ]× RN × RN and (x′i, u

′
i) ∈ R× R,

f̃i(t, xi, ui, µ̄(x,u)−i
)− f̃i(t, x

′
i, u

′
i, µ̄(x,u)−i

)

= F
(
t,

1

N
δ(xi,ui) +

N − 1

N
µ̄(x,u)−i

)
− F

(
t,

1

N
δ(x′i,u′i) +

N − 1

N
µ̄(x,u)−i

)
,

g̃i
(
xi, µ̄x−i

)
− g̃i

(
x′i, µ̄x−i

)
= G

( 1

N
δxi +

N − 1

N
µ̄x−i

)
−G

( 1

N
δx′i +

N − 1

N
µ̄x−i

)
.

(3.32)

Then α = 0 and Gop is a potential game.

Example 3.3.2 extends [32, Proposition 2.24] from cost functions dependent solely on
state variables to those dependent on both state and control variables. It follows from the
fact that by (3.32), hfi := f̃i − F and hgi := g̃i − G are independent of (xi, ui). This implies
Ci,j
V,1 = 0 as defined in (3.26). As the states are decoupled, Lby = 0 and hence α = 0 by

Theorem 3.3.2.

Games with mean field interactions. When all players’ state dynamics (3.20) are cou-
pled, a stronger condition on the cost functions is needed to ensure the constant α in (3.30)
decays to zero as the number of players N → ∞. The following example shows that if the
cost functions in (3.21) depend on the joint states and controls only through their empirical
measures, then the N -player game (3.20)-(3.21) is an α-potential game with α = O(1/N) as
N → ∞.

Example 3.3.3 (games with mean field interactions). Consider the game Gop defined by
(3.20)-(3.21). Suppose Assumption 3.3.2 holds and there exists L ≥ 0 such that

sup
i∈[N ],u∈Ai

∥u∥H4(R) ≤ L, max
i∈[N ]

|xi| ≤ L, and max
i∈[N ]

∥σi∥L∞ ≤ L.



CHAPTER 3. CONTINUOUS-TIME α-POTENTIAL GAME 65

Assume further that there exists f0 : [0, T ]× RN × RN → R and g0 : RN → R such that for
all i ∈ [N ], bi, fi and gi are of the following form:

bi(t, xi, x) = b̄i

(
t, xi,

1

N

N∑
ℓ=1

δxℓ

)
, (3.33)

fi(t, x, u) = f0(t, x, u) + ci(ui) + f̄i

(
t,

1

N

N∑
ℓ=1

δ(xℓ,uℓ)

)
, gi(x) = g0(x) + ḡi

(
1

N

N∑
ℓ=1

δxℓ

)
,

(3.34)

where b̄i : [0, T ]×R×P2(R) → R, ci : R → R, f̄i : [0, T ]×P2(R×R) → R, and ḡi : P2(R) → R
are twice continuously differentiable with bounded second-order derivatives (uniformly in N).
Then Gop is an α-potential game with α ≤ C/N , for a constant C ≥ 0 independent of N .

Example 3.3.3 follows from the fact that by (3.33) and (3.34),

|(∂xh∆
f
i,j)(t, 0, 0)|+ |(∂xh∆

g
i,j)(0)| ≤ C/N,

and

|(∂2xhxℓ∆
f
i,j)(t, x, u)|+ |(∂2xhuℓ∆

f
i,j)(t, x, u)|+ |(∂2xhxℓ∆

g
i,j)(x)| ≤ C

(
1

N
1h=ℓ +

1

N2
1h̸=ℓ

)
for some constant C ≥ 0 independent of N (see Remark 3.3.1), which yields the bound of α
due to Theorem 3.3.2.

Remark 3.3.3. Example 3.3.3 allows all players to have different admissible control sets
Ai, and heterogeneous dependencies on the empirical measures of the joint state and control
profiles. This is in contrast to the classical N-player mean field games with symmetric and
homogeneous players (see [32]).

Note that even if all players have homogeneous coefficients, the conditions in Example
3.3.3 differ from those for potential mean field games (MFGs) introduced in [99, 100, 30].
An MFG is considered potential if there exists an optimal control problem whose optimal
trajectories coincide with the equilibria of the MFG. This is a weaker condition than the
notion of N-player potential game described in [113], as it is a local property that concerns
only the minimizer of the potential function.

In contrast, Example 3.3.3 allows the α-potential function to control the derivatives of
each player’s objective function globally, with an error of order O(1/N) as N → ∞. This
property is crucial for ensuring the convergence of gradient-based learning algorithms (see
[71] and references therein). Consequently, when bi depends on the empirical measure of the
states, we require the cost functions f̄i and ḡi in (3.34) to depend on the state and controls
only through their empirical measures. Assuming the uniqueness of Nash equilibria in MFGs,
the minimum of the α-potential function (with appropriate scaling) converges to the minimum
of the mean field potential function as N → ∞, provided that sufficient conditions are met
to allow the interchangeability of minimization and the limit.
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3.4 Closed-Loop Stochastic Differential Games

This section studies the stochastic differential games with closed-loop controls. Compared
with the open-loop games studied in Section 3.3.1, characterizing closed-loop α-potential
games is more technically involved. The increased complexity arises from the fact that if one
player changes her policy, this change is likely to impact the state trajectory of the system.
Even if other players continue employing the same policy, their actions and value functions
will change due to this change of the system state. This additional interdependence through
policies must be incorporated into the analysis.

Consider the closed-loop differential game Gcl = ([N ], (Ai)i∈[N ], (Vi)i∈[N ]) defined as fol-
lows: let [N ] = {1, . . . , N}, let Π = F 0,2([0, T ] × R × RN ;R) be the vector space defined
in Section 3.3.1, and let ΠN = F 0,2([0, T ] × R × RN ;R)N . For each i ∈ [N ], let Ai be a
convex subset of Π representing the set of admissible closed-loop policies of player i. For each
ϕ = (ϕi)i∈[N ] ∈ ΠN , let Xϕ = (Xϕ

i )
N
i=1 ∈ S2(RN) be the associated state process governed by

the following dynamics (cf. (3.20)): for all i ∈ [N ] and t ∈ [0, T ],

dXt,i = b̄i(t,Xt, u
ϕ
t,i)dt+ σi(t)dW

i
t , X0,i = ξi, with uϕt,i = ϕi(t,Xt,i,Xt), (3.35)

where ξi is a given square integrable F0-measurable random variable, and b̄i and σi are given
measurable functions. Define the value function Vi : A(N) ⊂ ΠN → R of player i by

Vi(ϕ) = E
[∫ T

0

fi(t,X
ϕ
t ,u

ϕ
t ) dt+ gi(X

ϕ
T )

]
, (3.36)

where uϕ
t := (ϕi(t,X

ϕ
t,i,X

ϕ
t ))i∈[N ] is the joint closed-loop control profile3 at t, and fi and gi

are given measurable function of quadratic growth in (x, u). We assume that the coefficients
(ξi)i∈[N ], (b̄i)i∈[N ], (σi)i∈[N ], (fi)i∈[N ] and (gi)i∈[N ] satisfy Assumption 3.3.2. In particular, for
all i ∈ [N ], b̄i satisfies b̄i(t, x, u) = bi(t, xi, x) + u for some bi ∈ F 0,2([0, T ]× R× RN ;R).

Note that the closed-loop game Gcl introduced above allows player i’s admissible policies
to depend nonlinearly on both the private state Xϕ

i and the population state Xϕ in a hetero-
geneous manner. To simplify the notation, we restrict the admissible policies to be elements
of the space F 0,2([0, T ] × R × RN ;R), which implies that each policy’s dependence on the
population state admits suitable a-priori bounds in terms of N . As highlighted in Remark
3.3.1, these policies include those that depend on the empirical measure of the joint state
Xϕ as special cases. For each ϕ ∈ Ai, we express the dependence of ϕ on the private state
and the population state separately. This separation allows for quantifying the constant α
in (3.12) in terms of the strength of the dependence of admissible policies on the population
state, namely, the constant Lϕy .

Similar to the open-loop games, the linear derivatives of the value function (3.36) for
closed-loop games Gcl can also be represented and analyzed using appropriate sensitivity

3In the sequel, a (closed-loop) policy refers to a deterministic function ϕ that maps time and state
variables to an action, and a closed-loop control refers to the stochastic process uϕ generated by a certain
policy ϕ.
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processes of the state dynamic (3.35). These sensitivity processes are more complex than
those for open-loop controls (see (3.22) and (3.23)) because of the additional interdependence
created by the closed-loop policies.

For each ϕ ∈ ΠN , let Xϕ be the state process satisfying (3.35). For each h ∈ [N ] and
ϕ′
h ∈ Π, let Yϕ,ϕ′h ∈ S2(RN) be the solution to the following dynamics: for all t ∈ [0, T ],

dY h
t,i =

[
(∂x(bi + ϕi))(t,X

ϕ
t,i,X

ϕ
t )Y

h
t,i

+
N∑
j=1

(∂yj(bi + ϕi))(t,X
ϕ
t,i,X

ϕ
t )Y

h
t,j + δh,iϕ

′
h(t,X

ϕ
t,i,X

ϕ
t )

]
dt,

Y h
0,i = 0, ∀i ∈ [N ].

(3.37)

Compared with (3.22), (3.37) has additional terms involving partial derivatives of ϕi, due to
the feedback structure of the closed-loop policy. Moreover, as shown in [66, Lemma 5.1], for
any q ≥ 2, if ξ0 ∈ Lq(Ω;R) for all i ∈ [N ], then for all ϕ′

h ∈ Π,

lim
ε↘0

E

[
sup
t∈[0,T ]

∣∣∣∣1ε (Xϕε

t −Xϕ
t )−Y

ϕ,ϕ′h
t

∣∣∣∣q
]
= 0,

where ϕε = (ϕh + εϕ′
h, ϕ−h) for all ε ∈ (0, 1). This implies that Yϕ,ϕ′h is the derivative of the

controlled state Xϕ when player h varies her policy in the direction ϕ′
h.

Moreover, for each h, ℓ ∈ [N ] and ϕ′
h, ϕ

′′
ℓ ∈ Π, let Zϕ,ϕ

′
h,ϕ

′′
ℓ be the solution to the following

dynamics: for all i ∈ [N ] and t ∈ [0, T ],

dZh,ℓ
t,i =

[
(∂x(bi + ϕi))(t,X

ϕ
t,i,X

ϕ
t )Z

h,ℓ
t,i

+
N∑
j=1

(∂yj(bi + ϕi))(t,X
ϕ
t,i,X

ϕ
t )Z

h,ℓ
t,j + f

ϕ,ϕ′h,ϕ
′′
ℓ

t,i

]
dt,

Zh,ℓ
0,i = 0,

(3.38)

where f
ϕ,ϕ′h,ϕ

′′
ℓ

i : Ω× [0, T ] → R is defined by

f
ϕ,ϕ′h,ϕ

′′
ℓ

t,i :=

(
Y
ϕ,ϕ′h
t,i

Y
ϕ,ϕ′h
t

)⊤(
∂2xx(bi + ϕi) ∂2xy(bi + ϕi)
∂2yx(bi + ϕi) ∂2yy(bi + ϕi)

)
(t,Xϕ

t,i,X
ϕ
t )

(
Y
ϕ,ϕ′′ℓ
t,i

Y
ϕ,ϕ′′ℓ
t

)

+ δh,i

(
(∂xϕ

′
h)(t,X

ϕ
t,i,X

ϕ
t )Y

ϕ,ϕ′′ℓ
t,i + (Y

ϕ,ϕ′′ℓ
t )⊤(∂yϕ

′
h)(t,X

ϕ
t,i,X

ϕ
t )

)
+ δℓ,i

(
(∂xϕ

′′
ℓ )(t,X

ϕ
t,i,X

ϕ
t )Y

ϕ,ϕ′h
t,i + (Y

ϕ,ϕ′h
t )⊤(∂yϕ

′′
ℓ )(t,X

ϕ
t,i,X

ϕ
t )

)
,

(3.39)
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and Yϕ,ϕ′h and Yϕ,ϕ′′ℓ are defined as in (3.37). By [66, Lemma 5.2], for all ϕ′
h, ϕ

′′
ℓ ∈ Π, if

ξ0 ∈ L4(Ω;R) for all i ∈ [N ], then limε↘0 E
[
supt∈[0,T ]

∣∣∣1ε(Yϕε,ϕ′h
t −Y

ϕ,ϕ′h
t )− Z

ϕ,ϕ′h,ϕ
′′
ℓ

t

∣∣∣2] = 0,

where ϕε = (ϕℓ + εϕ′′
ℓ , ϕ−ℓ) for all ε ∈ (0, 1). This proves that Zϕ,ϕ

′
h,ϕ

′′
ℓ is the second-order

derivative of the state Xϕ when player h first varies her policy in the direction ϕ′
h, and then

player ℓ varies her policy in the direction ϕ′′
ℓ .

In addition to the sensitivity processes for the controlled state Xϕ, we also require the
sensitivity of the control process uϕ with respect to players’ policies. These processes capture
the change in each player’s control due to the change in the system state. More precisely,
let ϕ ∈ ΠN , let uϕ = (ϕi(·, Xϕ

i ,X
ϕ))i∈[N ]. For each h, ℓ ∈ [N ] and each ϕ′

h, ϕ
′′
ℓ ∈ Π, define

vϕ,ϕ
′
h = (v

ϕ,ϕ′h
i )i∈[N ] such that for all i ∈ [N ],

v
ϕ,ϕ′h
i = (∂xϕi)(·, Xϕ

i ,X
ϕ)Y

ϕ,ϕ′h
i + (Yϕ,ϕ′h)⊤(∂yϕi)(·, Xϕ

i ,X
ϕ) + δh,iϕ

′
h(·, X

ϕ
i ,X

ϕ), (3.40)

and define wϕ,ϕ′h,ϕ
′′
ℓ = (w

ϕ,ϕ′h,ϕ
′′
ℓ

i )i∈[N ] such that for all i ∈ [N ],

w
ϕ,ϕ′h,ϕ

′′
ℓ

i =

(
Y
ϕ,ϕ′h
i

Yϕ,ϕ′h

)⊤(
∂2xxϕi ∂2xyϕi
∂2yxϕi ∂2yyϕi

)
(·, Xϕ

i ,X
ϕ)

(
Y
ϕ,ϕ′′ℓ
i

Yϕ,ϕ′′ℓ

)
+ (∂xϕi)(·, Xϕ

i ,X
ϕ)Z

ϕ,ϕ′h,ϕ
′′
ℓ

i + (Zϕ,ϕ
′
h,ϕ

′′
ℓ )⊤(∂yϕi)(·, Xϕ

i ,X
ϕ)

+ δh,i

(
(∂xϕ

′
h)(·, X

ϕ
i ,X

ϕ)Y
ϕ,ϕ′′ℓ
i + (Yϕ,ϕ′′ℓ )⊤(∂yϕ

′
h)(·, X

ϕ
i ,X

ϕ)
)

+ δℓ,i

(
(∂xϕ

′′
ℓ )(·, X

ϕ
i ,X

ϕ)Y
ϕ,ϕ′h
i + (Yϕ,ϕ′h)⊤(∂yϕ

′′
ℓ )(·, X

ϕ
i ,X

ϕ)
)
.

(3.41)

As shown in [66, Lemma 5.2], if ξi ∈ L4(Ω;R) for all i ∈ [N ], then

lim
ε↘0

E

[∫ T

0

∣∣∣∣1ε (uϕε

t − uϕ
t )− v

ϕ,ϕ′h
t

∣∣∣∣4 dt
]
= 0,

where ϕε = (ϕh + εϕ′
h, ϕ−h) for all ε ∈ (0, 1), and

lim
ε↘0

E

[∫ T

0

∣∣∣∣1ε (v ϕ̃ε,ϕ′ht − v
ϕ,ϕ′h
t )−w

ϕ,ϕ′h,ϕ
′′
ℓ

t

∣∣∣∣2 dt
]
= 0,

where ϕ̃ε = (ϕℓ + εϕ′′
ℓ , ϕ−ℓ) for all ε ∈ (0, 1). This shows that vϕ,ϕ

′
h is the derivative of the

joint control process uϕ with respect to player h’s policy, and wϕ,ϕ′h,ϕ
′′
ℓ is the derivative of

uϕ with respect to player h and player ℓ’s policies.
We now characterize the linear derivatives of Vi in (3.36) with respect to policies as in

[66, Theorem 4.4]. For all i, h ∈ [N ], the linear derivative δVi
δϕh

: A(N) × Π → R of Vi with
respect to Ah is given by

δVi
δϕh

(ϕ;ϕ′
h) = E

∫ T

0

(
Y
ϕ,ϕ′h
t

v
ϕ,ϕ′h
t

)⊤(
∂xfi
∂ufi

)
(t,Xϕ

t ,u
ϕ
t )dt+ (Y

ϕ,ϕ′h
T )⊤(∂xgi)(X

ϕ
T )

 . (3.42)
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Moreover, for all i, h, ℓ ∈ [N ], define δ2Vi
δϕhϕℓ

: A(N) × Π× Π → R by

δ2Vi
δϕhδϕℓ

(ϕ;ϕ′
h, ϕ

′′
ℓ ) = E

[∫ T

0

{(
Y
ϕ,ϕ′h
t

v
ϕ,ϕ′h
t

)⊤(
∂2xxfi ∂2xufi
∂2uxfi ∂2uufi

)
(t,Xϕ

t ,u
ϕ
t )

(
Y
ϕ,ϕ′′ℓ
t

v
ϕ,ϕ′′ℓ
t

)

+

(
Z
ϕ,ϕ′h,ϕ

′′
ℓ

t

w
ϕ,ϕ′h,ϕ

′′
ℓ

t

)⊤(
∂xfi
∂ufi

)
(t,Xϕ

t ,u
ϕ
t )

}
dt

]
+ E

[
(Y

ϕ,ϕ′h
T )⊤(∂2xxgi)(X

ϕ
T )Y

ϕ,ϕ′′ℓ
T + (Z

ϕ,ϕ′h,ϕ
′′
ℓ

T )⊤(∂xgi)(X
ϕ
T )
]
, (3.43)

which is the linear derivative of ϕ 7→ δVi
δϕh

(ϕ;ϕ′
h) with respect to Aℓ.

An explicit representation of the α-potential function Φ in (3.11) can be obtained for the
closed-loop game Gcl based on the expression of ( δVi

δϕi
)i∈[N ] in (3.42):

Theorem 3.4.1. Consider the game Gcl defined by (3.35)-(3.36). Suppose Assumption 3.3.2
holds. For any fixed z = (zi)i∈[N ] ∈ Π(N), the function Φ : A(N) → R in (3.11) can be
expressed as

Φ(uϕ) =

∫ 1

0

N∑
h=1

E

[∫ T

0

(
Yϕr,ϕh−zh
t

vϕ
r,ϕh−zh
t

)⊤(
∂xfi
∂ufi

)
(t,Xϕr

t ,u
ϕr

t )dt+ (Yϕr,ϕh−zh
T )⊤(∂xgi)(X

ϕr

T )

]
dr.

with ϕr := z+ r(ϕ− z).

The above expression follows directly from (3.11) for Φ(u) and (3.42) for δVi
δui

, by substi-
tuting ϕ with z + r(ϕ− z ), and ϕ′

h with ϕh − zh.

3.4.1 Quantifying α for closed-loop stochastic differential game

The following theorem is an analog of Theorem 3.3.2 and characterizes the constant α in
(3.12) for closed-loop games with general cost functions.

Before stating the theorem, we introduce a few constants that will be used in the analysis.
Let i, j ∈ [N ] with i ̸= j, and define ∆f

i,j = fi − fj and ∆g
i,j = gi − gj. Three constants

Ci,j
V,1, C

i,j
V,2, C

i,j
V,3 are given by:

Ci,j
V,1 := ∥∂2xixj∆

f
i,j∥L∞ + ∥∂2xiuj∆

f
i,j∥L∞ + ∥∂2uixj∆

f
i,j∥L∞ + ∥∂2uiuj∆

f
i,j∥L∞ + ∥∂2xixj∆

g
i,j∥L∞ ,

(3.44)

Ci,j
V,2 :=

∑
h∈{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2 + ∥(∂uh∆

f
i,j)(·, 0, 0)∥L2 + |(∂xh∆

g
i,j)(0)|

)
+

∑
h∈{i,j},ℓ∈[N ]

(
∥∂2xhxℓ∆

f
i,j∥L∞ + ∥∂2xhuℓ∆

f
i,j∥L∞ + ∥∂2uhxℓ∆

f
i,j∥L∞ + ∥∂2uhuℓ∆

f
i,j∥L∞

+ ∥∂2xhxℓ∆
g
i,j∥L∞

)
, (3.45)
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Ci,j
V,3 :=

∑
h∈[N ]\{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2 + ∥(∂uh∆

f
i,j)(·, 0, 0)∥L2 + |(∂xh∆

g
i,j)(0)|

)
+

∑
h∈[N ]\{i,j}
ℓ∈[N ]\{i,j}

(
∥∂2xhxℓ∆

f
i,j∥L∞ + ∥∂2xhuℓ∆

f
i,j∥L∞ + ∥∂2uhxℓ∆

f
i,j∥L∞ + ∥∂2uhuℓ∆

f
i,j∥L∞

+ ∥∂2xhxℓ∆
g
i,j∥L∞

)
. (3.46)

Theorem 3.4.2. Suppose Assumption 3.3.2 holds and ξi ∈ L4(Ω;R) for all i ∈ [N ]. Then

for all ϕ ∈ ΠN and ϕ′
i, ϕ

′′
j ∈ Π, it holds with Ly = max{Lby, Lϕy , L

ϕ′i
y , L

ϕ′′j
y } that∣∣∣∣ δ2Viδϕiδϕj

(ϕ;ϕ′
i, ϕ

′′
j )−

δ2Vj
δϕjδϕi

(ϕ;ϕ′′
j , ϕ

′
i)

∣∣∣∣ ≤ C

(
Ci,j
V,1 + Ly

(
1

N
Ci,j
V,2 +

1

N2
Ci,j
V,3

))
,

where the constant C ≥ 0 depends only on the upper bounds of T , maxi∈[N ] E[|ξi|4],
maxi∈[N ] ∥σi∥L4, Lb, Lϕ, Lϕ

′
i, Lϕ

′′
j and Ly, and the constants Ci,j

V,1, C
i,j
V,2 and Ci,j

V,3, defined
in (3.44), (3.45) and (3.46), respectively, depend only on the upper bounds of the first- and
second-order derivatives of ∆f

i,j and ∆g
i,j in (x, u).

Consequently, if supi∈[N ],ϕi∈Ai
(Lϕi +Lϕiy ) <∞, then the game Gcl is an α-potential game

with

α = Cmax
i∈[N ]

∑
j∈[N ]\{i}

(
Ci,j
V,1 + Lby

(
1

N
Ci,j
V,2 +

1

N2
Ci,j
V,3

))
,

where C ≥ 0 is a constant independent of the cost functions, and an α-potential function Φ
is given by (3.11), with δVi

δϕi
, i ∈ [N ], specified in (3.42).

The proof of Theorem 3.4.2 is given in Section 3.7.3. The key step is to precisely quantify
the moment of the sensitivity processes Yϕ,ϕ′h , Zϕ,ϕ

′
h,ϕ

′′
ℓ , vϕ,ϕ

′
h and wϕ,ϕ′h,ϕ

′′
ℓ in terms of the

number of players N , the indices h, ℓ, and the coupling strength in the drift coefficients
and the policies; see Propositions 3.7.7, 3.7.8 and 3.7.9. These moment estimates are more
complex compared to those for the open-loop sensitivity processes (3.22) and (3.23), due to
the coupling present in the closed-loop policies.

3.4.2 Examples of closed-loop α-potential games

We illustrate the application of Theorem 3.4.2 through two examples, i.e., distributed games
and games with mean-field type interactions. In both cases, we obtain more explicit non-
asymptotic bounds of α by leveraging structural conditions of the drift coefficients and cost
functions.

Distributed games. If each player’s admissible closed-loop policies depend only on her
own state, then the closed-loop distributed game is an α-potential game under the same
condition as the open-loop distributed game.
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Example 3.4.1 (Distributed games). Consider the game Gcl defined as in (3.35)-(3.36).
Suppose Assumption 3.3.2 holds, and for all i ∈ [N ] and ϕi ∈ Ai, (t, x, y) 7→ bi(t, x, y) and
(t, x, y) 7→ ϕi(t, x, y) are independent of y. Assume further that there exists L,Lc ≥ 0 and
β ≥ 1/2 such that supi∈[N ],ϕi∈Ai

Lϕi ≤ L, maxi∈[N ] E[|ξi|4] ≤ L, maxi∈[N ] L
bi ≤ L, and for

all i, j ∈ [N ], ∆f
i,j := fi − fj and ∆g

i,j := gi − gj satisfy for all (t, x, u) ∈ [0, T ] × RN ×
RN , |(∂2xixj∆

f
i,j)(t, x, u)| + |(∂2xiuj∆

f
i,j)(t, x, u)| + |(∂2uixj∆

f
i,j)(t, x, u)| + |(∂2uiuj∆

f
i,j)(t, x, u)| +

|(∂2xixj∆
g
i,j)(x)| ≤ LcN−2β. Then Gcl is an α-potential game with α ≤ CLcN−(2β−1), where

C ≥ 0 is a constant independent of N and β.

We present a closed-loop analog of Example 3.3.2 for completeness. The result follows
directly from Theorem 3.4.1 and the same argument as in Example 3.3.2. Additionally, it can
be seen as a special case of the general characterization of closed-loop distributed potential
games in [66, Theorem 3.1].

Example 3.4.2 (Distributed games with α = 0). Consider the game Gcl defined as in (3.35)-
(3.36). Suppose Assumption 3.3.2 holds, and for all i ∈ [N ] and ϕi ∈ Ai, (t, x, y) 7→ bi(t, x, y)
and (t, x, y) 7→ ϕi(t, x, y) are independent of y. Assume further that for all i ∈ [N ], fi and
gi satisfy the conditions (3.31) and (3.32). Then Gcl is a potential game.

Games with mean-field type interactions. Building upon Theorem 3.4.2, we establish
an analog of Example 3.3.3 for closed-loop games with mean-field type interactions. Due to
the additional coupling introduced by the closed-loop controls, stronger conditions on the
cost functions are required to ensure that the N -player game is an α-potential game with a
decaying α.

The following example provides a sufficient condition for the closed-loop game Gcl to be
an α-potential game with α = O(1/N). In contrast to the open-loop game described in
Example 3.3.3, each player in general cannot have separate dependence on her individual
behavior (i.e., without the function ci in (3.34)), due to the coupling of closed-loop policies.

Example 3.4.3. Consider the game Gcl defined as in (3.35)-(3.36). Suppose Assumption
3.3.2 holds and there exists L ≥ 0 such that supi∈[N ],ϕi∈Ai

(Lϕi +Lϕiy ) ≤ L, maxi∈[N ] E[|ξi|4] ≤
L, maxi∈[N ](L

bi + Lbiy ) ≤ L and maxi∈[N ] ∥σi∥L∞ ≤ L. Assume further that there exists
f0 : [0, T ] × RN × RN → R and g0 : RN → R such that for all i ∈ [N ], fi and gi are of the
form

fi(t, x, u) = f0(t, x, u) + f̄i

(
t,

1

N

N∑
ℓ=1

δ(xℓ,uℓ)

)
, gi(x) = g0(x) + ḡi

(
1

N

N∑
ℓ=1

δxℓ

)
,

where f̄i : [0, T ]× P2(R× R) → R and ḡi : P2(R) → R are twice continuously differentiable
with uniformly bounded second-order derivatives. Then Gcl is an α-potential game with α =
C/N and the constant C ≥ 0 independent of N .
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3.5 Conditional McKean-Vlasov Control Problem for

α-NE

Given an α-potential function Gdiff, this section establishes a dynamic programming approach
to minimize the α-potential function Φ in (3.18) over A(N), where the state process is gov-
erned by (3.14). For notational simplicity, we focus on open-loop games in this section.
An analogous analysis can be applied to closed-loop games. The main difficulty is that the
objective (3.18) depends on the aggregated behavior of the state processes with respect to
r ∈ [0, 1], which acts as an additional noise independent of the Brownian motion W . Mean-
while, the admissible controls in A(N) are adapted to a smaller filtration F that depends only
on W but is independent of r. To apply the dynamic programming approach, we embed the
optimization problem into a suitable conditional McKean–Vlasov (MKV) control problem.

3.5.1 Conditional MKV control problem

We start with some necessary notation: For each t, s ∈ [0, T ], let W t
s := Ws∨t −Wt be the

Brownian increment after time t, and let the filtration Ft be the P-complement of the filtration
generated by W t = (W t

s)s≥0. Note that F0 coincides with F. For each Euclidean space E,
we denote by P2(E) the set of probability measures µ on E with finite second moment, i.e.,
∥µ∥22 :=

∫
E
|x|2µ(dx) < ∞. The space P2(E) is equipped with the 2-Wasserstein distance.

We assume without loss of generality (see e.g., [44]) that there exists a sub-σ-field G ⊂ F ,
which is independent of W and is “rich enough” in the sense that P2(S) = {L(ξ) | ξ ∈
L2(G;S)}, where L(ξ) denotes the distribution of ξ under P, S := R(N+1)Nd × [0, 1], and
L2(G;S) is the set of S-valued G-measurable square integrable random variables on (Ω,F ,P).
We define G := (Gt)t∈[0,T ] to be the filtration generated by W , augmented with G and P-null
sets.

Now we introduce the MKV control problem associated with (3.18) and (3.14). The state
process of the MKV control problem takes values in S := R(N+1)Nd× [0, 1], encompassing the
original state process Xu , the sensitivity processes (Yu ,ui)i∈[N ], and the additional parameter

r. More precisely, let A =
∏N

i=1Ai, and fix z = (zi)i∈[N ] ∈ A. For each t ∈ [0, T ], let At be
the set of Ft-progressively measurable square integrable processes taking values in A. Let
PUnif

2 (S) be the space of measures ν ∈ P2(S) whose marginal ν|[0,1] on [0, 1] is the uniform
distribution:

PUnif
2 (S) := {ν ∈ P2(S) | ν|[0,1] = Unif(0, 1)}.

For each ν ∈ PUnif
2 (S), u ∈ At, and (ξ, r) ∈ L2(G;S) with L(ξ, r) = ν, consider the process

Xt,ξ,r,u governed by the following dynamics, which concentrates the state process (3.14) and
the sensitivity processes (3.16):

Xt,ξ,r,u
s = ξ +

∫ s

t

B(v,Xt,ξ,r,u
v , r,uv)dv +

∫ s

t

Σ(v,Xt,ξ,r,u
v , r,uv)dW

t
v , s ∈ [t, T ], (3.47)
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where B = vcat(B1, . . . , BN+1) : [0, T ] × S × A → R(N+1)Nd is defined by: for all t ∈ [0, T ],
x = vcat(x, y1, . . . , yN) ∈ R(N+1)Nd, r ∈ [0, 1], and u = (ui)i∈[N ] ∈ A, B1(t,x, r, u) :=
vcat(b1(t, x, z + r(u− z)), . . . , bN(t, x, z + r(u− z))) and for any i ∈ [N ],

Bi+1(t,x, r, u) :=

 (∂xb1) (t, x, z + r(u− z)) yi + (∂uib1) (t, x, z + r(u− z)) (ui − zi)
...

(∂xbN) (t, x, z + r(u− z)) yi + (∂uibN) (t, x, z + r(u− z)) (ui − zi)

 ,

and Σ = (Σ1, . . . ,Σm) : [0, T ]×S×A→ R(N+1)Nd×m is defined such that for all k = 1, . . . ,m,
Σk is defined in the same way as B, but with bi replaced by σik for all i ∈ [N ]. Under
Assumption 3.3.1, (Xt,ξ,r,u , r) is a uniquely defined S-valued G-adapted square integrable
process. Moreover, as r is independent of F t

s and is stationary in time, the conditional law
µt,ξ,r,us := L(Xt,ξ,r,u

s , r|F t
s), s ∈ [t, T ], is a PUnif

2 (S)-valued G-optional process (see [50, Lemma
A.1]).

Consider the following cost functional, which is a dynamic version of the α-potential
function (3.12):

J(t, ξ, r,u) := E
[ ∫ T

t

〈
F (s, ·, ·,us), µ

t,ξ,r,u
s

〉
ds+

〈
G, µt,ξ,r,uT

〉]
, (3.48)

where µt,ξ,r,us = L(Xt,ξ,r,u
s , r|F t

s), F : [0, T ] × S × A → R and G : S → R are defined by: for
all t ∈ [0, T ], x = vcat(x, y1, . . . , yN) ∈ R(N+1)Nd, r ∈ [0, 1] and u = (ui)i∈[N ] ∈ A,

F (t,x, r, u) :=
N∑
j=1

(
yj

uj − zj

)⊤(
∂xfj
∂ujfj

)
(t, x, z + r(u− z)) ,

G(x, r) :=
N∑
j=1

y⊤j (∂xgj) (x) ,

(3.49)

where ⟨h, µ⟩ denotes the integral of the function h with respect to the measure µ.
The following proposition identifies minimizing the α-potential function Φ in (3.18) as

solving an MKV control problem with a specific initial condition. The result relies on the
crucial observation that the cost functional J in (3.48) satisfies the law invariance property
[43, 50], i.e., it depends on the law of (ξ, r) instead of the specific choice of the random
variable (ξ, r) itself.

Proposition 3.5.1. Suppose Assumption 3.3.1 holds. Let J be defined in (3.48). For all
(t, ν) ∈ [0, T ] × PUnif

2 (S), u ∈ At, and (ξ, r), (ξ′, r′) ∈ L2(G;S) with law ν, J(t, ξ, r,u) =
J(t, ξ′, r′,u).

Consequently, the optimal value function for minimizing (3.48) can be identified as V :
[0, T ]× PUnif

2 (S) → R ∪ {−∞,∞}:

V (t, ν) := inf
u∈At

J(t, ξ, r,uuu), (3.50)



CHAPTER 3. CONTINUOUS-TIME α-POTENTIAL GAME 74

for any (ξ, r) ∈ L2(G;S) with L(ξ, r) = ν. Moreover, let Φ be defined in (3.18), we have

V
(
0, δvcat(x1,...,xN ,0N2d)

⊗ Unif(0, 1)
)
= inf

u∈A(N)
Φ(u), (3.51)

where xi is the initial state of (3.14) and 0N2d ∈ RN2d is the zero vector.

The law invariance of J follows from the fact that each u ∈ At is adapted to the fil-
tration of W , and is independent of G. Then by the strong uniqueness of (3.47), it holds
that for all (ξ, r), (ξ′, r′) ∈ L2(G;S) with law ν, L(Xt,ξ,r,u ,u) = L(Xt,ξ′,r′,u ,u), and hence
J(t, ξ, r,u) = J(t, ξ′, r′,u) (see [50, Proposition 2.4]). The identity (3.51) follows from
A0 = A(N) and by the law of iterated conditional expectations, Φ(u) = J(t, ξ, r,uuu) with
ξ = vcat(x1, . . . , xN , 0N2d) and a uniform random variable r ∈ L2(G; [0, 1]).

We remark that (3.50) is a specific stochastic control problem with conditional MKV
dynamics, where the state (3.47) does not involve law dependence, and the cost functions
(3.48) depend linearly on the conditional distribution. As a result, the dynamic program-
ming approach, developed for general MKV control problems in [119, 50], can be applied to
minimize the α-potential function Φ.

3.5.2 HJB equation for the α-potential function

In the section, we identify the optimal value function (3.50) as a solution of an HJB equation.
We will adopt the notion of linear derivative with respect to probability measures as in
[73, 48, 65], as it allows for a clear distinction between the derivatives with respect to the
marginal laws of Xt,ξ,r,u and r; see Remark 3.5.1.

Specially, we say a function ϕ : [0, T ]×P2(E) → R is in C1,2([0, T ]×P2(E)) if there exist

continuous functions δϕ
δµ

: [0, T ] × P2(E) × E → R and δ2ϕ
δµ2

: [0, T ] × P2(E) × E × E → R
such that δ2ϕ

δµ2
is symmetric in its last two arguments and the following properties hold:

• continuously differentiable: ∂tϕ(t, µ), ∂v
δϕ
δµ
(t, µ, v), ∂2vv

δϕ
δµ
(t, µ, v) and ∂2vv′

δ2ϕ
δ2µ

(t, µ, v, v′)

exist and are continuous in (t, µ, v, v′).

• locally uniform bound: for any compact K ⊂ P2(E), there exists cK ≥ 0 such that
for all (t, µ) ∈ [0, T ] ×K and v, v′ ∈ E, |∂v δϕδµ(t, µ, v)| ≤ cK(1 + |v|), |∂2vv

δϕ
δµ
(t, µ, v)| +

|∂2vv′
δ2ϕ
δ2µ

(t, µ, v, v′)| ≤ cK .

• fundamental theorem of calculus: for all µ, ν ∈ P2(E) and t ∈ [0, T ],

ϕ(t, µ)− ϕ(t, ν) =

∫ 1

0

∫
E

δϕ

δµ
(t, λµ+ (1− λ)ν, v)(µ− ν)(dv)dλ,

ϕ(t, µ)− ϕ(t, ν)−
∫
E

δϕ

δµ
(t, ν, v)(µ− ν)(dv)

=

∫ 1

0

∫ r

0

∫
E×E

δ2ϕ

δ2µ
(t, sµ+ (1− s)ν, v, v′)(µ− ν)(dv)(µ− ν)(dv′)dsdr.
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For each u ∈ A, ϕ ∈ C1,2([0, T ] × P2(S)), t ∈ [0, T ], and µ ∈ P2(S), define the function
Luϕ(t, µ) : S → R by

Luϕ(t, µ)(x, r) := B(t,x, r, u)⊤∂
x

δϕ

δµ
(t, µ,x, r) +

1

2
tr

(
(ΣΣ⊤)(t,x, r, u)∂2

xx

δϕ

δµ
(t, µ,x, r)

)
(3.52)

with B and Σ in (3.47), and define the function Muϕ(t, µ) : S × S → R by

Muϕ(t, µ)(x, r,x′, r′) :=
1

2
tr

(
Σ(t,x, r, u)Σ(t,x′, r′, u)⊤∂2

xx
′
δ2ϕ

δ2µ
(t, µ,x, r,x′, r′)

)
. (3.53)

Note that under Assumption 3.3.1, Luϕ(t, µ) ∈ L1(S, µ) and Muϕ(t, µ) ∈ L1(S × S, µ⊗ µ).
Define the Hamiltonian

Ĥ(t, µ, ϕ, u) := ⟨Luϕ(t, µ), µ⟩+ ⟨ Muϕ(t, µ), µ⊗ µ⟩+ ⟨F (t, ·, ·, u), µ⟩, (3.54)

with F defined in (3.49).

Remark 3.5.1. As r is stationary in (3.47), the operators Lu and Mu only involve the
partial derivative with respect to the x-component, and not the derivative with respect to the
r-component. One can equivalently express these operators using the Lions derivatives as in
[119]. Indeed, let ∂µϕ be the Lions derivative of ϕ,

Luϕ(t, µ)(x, r) =
(
B(t,x, r, u)

0

)⊤

∂µϕ(t, µ)(x, r)

+
1

2
tr

((
(ΣΣ⊤)(t,x, r, u) 0N(N+1)d

0⊤N(N+1)d 0

)
∂(x,r)∂µϕ(t, µ)(x, r)

)
,

due to the relation ∂µϕ = ∂(x,r)
δϕ
δµ

(see [32, Proposition 5.48]). Similar expression holds for

Muϕ. We adopt the expressions (3.52) and (3.53) to simplify the notation.

We now present a verification theorem, which constructs an optimal control of (3.50)
(and (3.18)) in an analytic feedback form using a smooth solution to an HJB equation in
the Wasserstein space.

Theorem 3.5.1. Suppose Assumption 3.3.1 holds. Let v ∈ C1,2([0, T ]×P2(S)) be such that
for a constant C ≥ 0,

|v(t, µ)| ≤ C(1 + ∥µ∥22),
∣∣∣∣∂(x,r) δvδµ(t, µ,x, r)

∣∣∣∣ ≤ C(1 + |x|+ ∥µ∥2),

for any (t, µ) ∈ [0, T ] × PUnif
2 (S), (x, r) ∈ S. Assume that infu∈A Ĥ(t, µ, v, u) ∈ R for all

(t, µ), and v satisfies the following HJB equation:{
∂tw(t, µ) + min

u∈A
Ĥ(t, µ, w, u) = 0, (t, µ) ∈ [0, T )× PUnif

2 (S),

w(T, µ) = ⟨G, µ⟩, µ ∈ PUnif
2 (S).

(3.55)
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Assume further that there exists a measurable map â : [0, T ] × PUnif
2 (S) → A such that for

all (t, µ) ∈ [0, T ]× PUnif
2 (S),

â(t, µ) ∈ argmin
u∈A

Ĥ(t, µ, v, u), (3.56)

for any (ξ, r) ∈ L2(G;S) with law µ, the following equation

X̂s =ξ +

∫ s

t

B
(
v, X̂v, r, â

(
v,L(X̂v, r | F t

v)
))

dv

+

∫ s

t

Σ
(
v, X̂v, r, â

(
v,L(X̂v, r | F t

v)
))

dW t
v , s ∈ [t, T ]

(3.57)

admits a square integrable solution X̂t,ξ,r, and the feedback control ût,ξ,rs := â(s,L(X̂t,ξ,r
s , r |

F t
s)), s ∈ [t, T ], is in At. Then v = V on [0, T ]×PUnif

2 (S), and for all (t, µ) ∈ [0, T ]×PUnif
2 (S),

ût,ξ,r ∈ At with L(ξ, r) = µ is an optimal control for V (t, µ).
Consequently, given ξ = vcat(x1, . . . , xN , 0N2d) and a uniform random variable r ∈

L2(G; [0, 1]), the control û0,ξ,r ∈ A(N) minimizes the α-potential function Φ given in (3.18),
thus is an α-Nash equilibrium of the game Gop in Section 3.3.

Theorem 3.5.1 only requires the function v to satisfy the HJB equation (3.55) on the sub-
space PUnif

2 (S), rather than on the entire space P2(S) as is the case for general MKV control
problems [119, 50]. This is due to the fact that the flow (µt,ξ,r,us )s∈[t,T ] = (L(Xt,ξ,r,u

s , r|F t
s))s∈[t,T ]

remains in PUnif
2 (S) for any control u ∈ At. Restricting the domain of (3.55) to PUnif

2 (S) is
essential for minimizing (3.18) analytically in linear-quadratic games; see Section 3.6.

Theorem 3.5.1 adapts [119, Theorem 4.2] to the present setting. Compared with [119],
since we do not assume the compactness of the action space, we introduce the additional
assumption on the finiteness of infu∈A Ĥ(t, µ, v, u). With this assumption in place, the proof
follows directly along the same lines as the same lines of the verification theorem [119,
Theorem 4.2].

Indeed, fix (t, µ) ∈ [0, T ] × PUnif
2 (S) and (ξ, r) ∈ L2(G;S) with law µ. For any u ∈ At,

applying Itô’s formula in [65] (see also [33, Theorem 4.17]) to s 7→ v(s,L(Xt,ξ,r,u
s , r | F t

s)) and
using the fact that L(Xt,ξ,r,u

s , r | F t
s) lies in PUnif

2 (S) and the condition (3.55) of v yield that
v(t, µ) ≤ J(t, ξ, τ,u), which implies that v(t, µ) ≤ V (t, µ). The condition (3.56) of â and
the assumption û t,ξ,r ∈ At imply the optimality of û t,ξ,r. A special case of Theorem 3.5.1
for a class of linear-quadratic games is presented in Theorem 3.6.1, with a detailed proof
provided.

3.6 A Toy Example: Linear-Quadratic α-Potential

Games

In this section, we illustrate our results through a simple open-loop linear-quadratic (LQ)
game GLQ on an undirected graph G = (V,E). The vertex of the graph is the set of players
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V = [N ], and each edge between the vertices represents a dependency between the associated
players. The objective function of player i in this game is given by

Vi(u) = E

[∫ T

0

(
u2i,t +

1

N

N∑
j=1

qij(X
u
i,t −Xu

j,t)
2

)
dt+ γi(X

u
i,T − di)

2

]
, (3.58)

where qij, γi ≥ 0, di ∈ R, and for any u = (ui)i∈[N ] ∈ H2(RN), the state process Xu
t is

governed by:

dXi,t = (ai(t)Xi,t + ui,t) dt+ σi(t)dW
i
t , Xi,0 = xi, t ∈ [0, T ], i ∈ [N ], (3.59)

where xi ∈ R, ai, σi : [0, T ] → R are (possibly distinct) continuous functions. Player i’s aims
to minimize (3.58) over the control set

Ai = {ui ∈ H2(R)|∥u∥H2(R) ≤ L}, (3.60)

where L > 0 is a given sufficiently large constant.
The above game can be viewed as a crowd flocking game [95, 8, 37]. The goal is for all

players to reach their respective destinations by a specified terminal time. During the game,
players exhibit a tendency to group together, mimicking the collective behavior observed in
natural flocks or herds. This phenomenon, known as flocking, is driven by factors such as
safety, efficiency, and social interaction.

3.6.1 Quantifying α for GLQ

Since the dynamics (3.59) is decoupled, Theorem 3.3.2 and Remark 3.3.2 imply that GLQ is
an αN -potential game with

αN ≤ C
1

N
max
i∈[N ]

∑
j ̸=i

|qji − qij|. (3.61)

Suppose that the constants (qij, γi, di, xi)i,j∈[N ], L and the sup-norms of (ai, σi)i∈[N ] are uni-
formly bounded in N . Then, an explicit bound for αN in terms of the number of players
N and the strength and symmetry of players’ interactions can be obtained, as illustrated
below:

• Symmetric interaction. If the interaction weights (qij)i,j∈[N ] satisfy the pairwise
symmetry condition qij = qji for all i, j ∈ [N ], then GLQ is a potential game, i.e.,
αN ≡ 0 regardless of the number of players N . This symmetry condition is common
in many interaction kernels, where player i’s influence on player j depends only on the
distance between them [8, 32, 10].
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• Asymmetric interaction. Suppose that the graph G has a bounded degree k :=
maxi∈V deg(i) for some k ≥ 2, i.e., each vertex is connected to at most k vertices.
Assume further that the interaction weights (qij)i,j∈[N ] exhibit an exponential decay of
the form

qij = wiη
c(i,j), ∀i, j ∈ [N ], (3.62)

where (wi)i∈[N ] are distinct positive constants that are uniformly bounded in N , η ∈
(0, 1) is a given constant, and c(i, j) is the (shortest-path) distance between vertices
i and j. Such a structure models localized interactions, where a player’s impact is
strongest on their immediate neighbors and diminishes further away [58, 59, 64]. For
clarity of exposition, we assume a sufficiently fast decay rate η satisfying η < 1/k.

In this setting, by (3.61), there exists a constant C ≥ 0, independent of η, k and N ,
such that

αN ≤ C

N
max
i∈[N ]

∑
j ̸=i

ηc(i,j) ≤ C

N

∞∑
ℓ=1

ηℓkℓ = C
ηk

(1− ηk)N
, (3.63)

where the second inequality used the fact that, for any vertex v ∈ V , the number of
vertices at distance ℓ from v is at most kℓ. The bound (3.63) demonstrates that αN
decays to zero as the number of players increases. Additionally, αN vanishes as η → 0,
reflecting the weakening interactions among players.

3.6.2 Constructing α-NE for GLQ

An αN -NE of GLQ can be constructed by minimizing the corresponding αN -potential function
(3.18). The structure of GLQ significantly simplifies the αN -potential function compared to
the general case studied in Sections 3.3 and 3.5. Indeed, as Xu

i depends only on ui, the

sensitivity processes Y
u ,u′i
t,j ≡ 0 for i ̸= j, reducing the dimension of the state process in

(3.18) fromO(N2) toO(N). Moreover, due to the LQ structure (3.58)-(3.59), the α-potential
function becomes a LQ control problem, whose minimizer can be solved analytically.

We consider an extended state dynamics including both the original state dynamics
(3.59) for Xu , and the dynamics for the sensitivity processes (Y u ,ui

i )i∈[N ]. Specifically, fix a
uniform random variable r ∈ L2(G; [0, 1]), and for each u ∈ H2(RN), consider the R2N -valued
G-adapted square integrable process Xr,u governed by

dXt = (A(t)Xt + Iru t) dt+ Σ(t)dWt, X0 = vcat(x1, · · · , xN , 0N), (3.64)

where Ir := vcat(rIN , IN) ∈ R2N×N , A(t) := diag(Ã(t), Ã(t)) ∈ S2N with Ã(t) :=
diag(a1(t), · · · , aN(t)), and Σ(t) = vcat(σ(t), 0N×N) ∈ R2N×N with σ(t) := diag(σ1(t), · · · ,
σN(t)). The α-potential function Φ for GLQ is given by (see (3.12) and (3.48) with z = 0):

Φ(u) = E
[∫ T

0

∫
S

(
x
⊤Qx+ 2ru⊤

t u t

)
dµr,u

t dt+

∫
S

(
x
⊤Q̄x+ 2p⊤x

)
dµr,u

T

]
, (3.65)
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where S := R2N×[0, 1], µr,u
t := L(Xr,u

t , r|Ft) for all t, Q :=

(
0N Q̃⊤

Q̃ 0N

)
∈ S2N with Q̃ ∈ RN×N

given by Q̃i,i = 1
N

∑
k ̸=i,k∈[N ] qik and Q̃i,j = − qij

N
for all i ̸= j, Q̄ :=

(
0N Γ
Γ 0N

)
∈ S2N

with Γ := diag(γ1, · · · , γN) ∈ SN , and p := −vcat(0N , γ1d1, · · · , γNdN) ∈ R2N . Above and
hereafter, for each n ∈ N, we denote by Sn the space of n × n symmetric matrices, by 0n
the n × n zero matrix, and by diag(a1, . . . , an) the diagonal matrix with diagonal elements
(a1, . . . , an).

The minimizer of (3.65) can be characterized with suitable ordinary differential equations
(ODEs). These ODEs differ from the Riccati equations for usual LQ control problems studied
in [133], due to the additional dependence on the parameter r in (3.64) and (3.65). To see
this, let M0 ∈ C1([0, T ];S2N) satisfy the following linear ODE:

Ṁ0 + A⊤M0 +M0A+Q = 0; M0(T ) = Q̄, (3.66)

where the dot denotes the time derivative. Consider the following Riccati equation for
M1 ∈ C1([0, T ];S4N):

Ṁ1 +

(
A 02N

02N A

)
M1 +M1

(
A 02N

02N A

)
−K⊤

M0,M1
KM0,M1 = 0; M1(T ) = 04N , (3.67)

with KM0,M1 : [0, T ] → RN×4N defined by

KM0,M1
:=
((

0N IN
)
M0

(
IN 0N

)
M0

)
+ ĨM1, Ĩ :=

(
1
2
IN IN 1

3
IN 1

2
IN
)
∈ RN×4N .

(3.68)

The constants in Ĩ correspond to E[r] and E[r2] for the uniform random variable r in (3.64).
Given a solution M1 to (3.67), consider the following linear ODE for M2 ∈ C1([0, T ];R4N):

Ṁ2 +

(
A 02N

02N A

)
M2 −K⊤

M0,M1
ĨM2 = 0; M2(T ) =

(
p

02N

)
. (3.69)

The following theorem constructs a minimizer of H2(RN) ∋ u 7→ Φ(u) ∈ R based on
solutions of (3.66), (3.67) and (3.69), which subsequently yields an αN -NE of the game GLQ.
The proof is given in Section 3.7.4.

Theorem 3.6.1. Suppose that M0 ∈ C1([0, T ];S2N), M1 ∈ C1([0, T ];S4N), and M2 ∈
C1([0, T ];R4N) satisfy (3.66), (3.67), and (3.69), respectively. Define

u∗
t = −KM0,M1(t)

(
E[Xr,u∗

t |Ft]

E[rXr,u∗

t |Ft]

)
− ĨM2(t)

for all t ∈ [0, T ]. Assume that u∗ = (u∗i )i∈[N ] satisfies ∥u∗i ∥H2(R) ≤ L for all i ∈ [N ], with
L > 0 in (3.60). Then u∗ is an αN -NE of GLQ, with αN satisfying (3.61). Moreover, the
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process Ft :=

(
E[Xr,u∗

t |Ft]

E[rXr,u∗

t |Ft]

)
, t ∈ [0, T ], satisfies the linear SDE

dFt =

[((
A(t) 02N

02N A(t)

)
− Ĩ⊤KM0,M1(t)

)
Ft − Ĩ⊤ĨM2(t)

]
dt+

(
Σ(t)
1
2
Σ(t)

)
dWt,

F0 =

(
X0
1
2
X0

)
. (3.70)

Remark 3.6.1. Theorem 3.6.1 leverages the LQ structure of GLQ to characterize the αN -

NE u∗ as a feedback function of F , which involves finite conditional moments of (Xr,u∗

t , r).
These moments serve as sufficient statistics for the infinite-dimensional conditional law
L(Xr,u∗

t , r|Ft). Notably, the process F is Markovian and satisfies the linear SDE (3.70),
enabling the efficient computation of the αN -NE. We remark that the solvability of (3.66)
and (3.69) follows from linear ODE theory, and the solvability of (3.67) can be ensured at
least for sufficiently small T .

3.7 Proofs of Main Results

3.7.1 Proof of Theorem 3.2.1

The following lemmas regarding the linear derivative are given in [67, Lemmas 4.1 and 4.2],
and will be used in the proof of Theorem 3.2.1.

Lemma 3.7.1. Suppose A(N) is convex, i ∈ [N ], and f : A(N) → R has a linear derivative
δf
δai

with respect to Ai. Let a = (ai, a−i) ∈ A(N), a′i ∈ Ai, and for each ε ∈ [0, 1], let
aε = (ai + ε(a′i − ai), a−i). Then the function [0, 1] ∋ ε 7→ f(aε) ∈ R is differentiable and
d
dε
f(aε) = δf

δai
(aε; a′i − ai) for all ε ∈ [0, 1].

Lemma 3.7.2. Suppose A(N) is convex and for all i ∈ [N ], f : A(N) → R has a linear
derivative δf

δai
with respect to Ai such that for all z,a ∈ A(N) and a′i ∈ Ai, [0, 1]

N ∋ ε 7→
δf
δai

(z + ε · (a − z); a′i) is continuous at 0, where z + ε · (a − z) := (zi + εi(ai − zi))i∈[N ].

Then for all z,a ∈ A(N), the map [0, 1] ∋ r 7→ f(z + r(a − z)) ∈ R is differentiable and
d
dr
f(z+ r(a− z)) =

∑N
j=1

δf
δaj

(z+ r(a− z); aj − zj).

Proof of Theorem 3.2.1. By Condition 2 and Lemma 3.7.2, [0, 1] ∋ r 7→ δVj
δaj

(z + r(a − z );

aj − zj) ∈ R is differentiable, and hence Φ in (3.11) is well-defined.
We now prove that Φ has a linear derivative with respect to Ai for all i ∈ [N ]. To this

end, let i ∈ [N ], a ∈ A(N) and a′i ∈ Ai. For all ε ∈ (0, 1], let aε := (ai + ε (a′i − ai) , a−i).
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By the definition of Φ in (3.11),

Φ (aε)− Φ(a) =

∫ 1

0

N∑
j=1

δVj
δaj

(z + r (aε − z ) ; aj + εδji (a
′
i − ai)− zj) dr

−
∫ 1

0

N∑
j=1

δVj
δaj

(z + r(a − z ); aj − zj) dr.

Then by z + r (aε − z ) ∈ A(N), for all ε ∈ (0, 1],

Φ (aε)− Φ(a)

ε
=

1

ε

∫ 1

0

N∑
j=1

(
δVj
δaj

(z + r (aε − z ) ; aj − zj)−
δVj
δaj

(z + r(a − z ); aj − zj)

)
dr

+
1

ε

∫ 1

0

N∑
j=1

εδji
δVj
δaj

(
z + r (aε − z ) ; a′j − aj

)
dr

=

∫ 1

0

N∑
j=1

1

ε

(
δVj
δaj

(z + r (aε − z ) ; aj − zj)−
δVj
δaj

(z + r(a − z ); aj − zj)

)
dr

+

∫ 1

0

δVi
δai

(z + r (aε − z ) ; a′i − ai) dr.

(3.71)
To send ε→ 0 in the above equation, note that for all ε ∈ [0, 1], r ∈ [0, 1], (z + r (aε − z ))−i =
z−i + r (a−i − z−i) and (z + r (aε − z ))i = zi + r (ai + ε (a′i − ai)− zi) = zi + r (ai − zi) +
ε ((zi + r (a′i − zi))− (zi + r (ai − zi))) with zi+r (ai − zi) , zi+r (a

′
i − zi) ∈ Ai. Thus for all

j ∈ [N ], the twice differentiability of Vj and Lemma 3.7.1 imply that ε 7→ δVj
δaj

(z +r (aε − z ) ;

aj − zj) is differentiable on [0, 1] and

d

dε

δVj
δaj

(z + r (aε − z ) ; aj − zj) =
δ2Vj
δajδai

(z + r (aε − z ) ; aj − zj, r (a
′
i − ai))

=
δ2Vj
δajδai

(z + r (aε − z ) ; aj − zj, a
′
i − ai) r,

where the last identity used the linearity of
δ2Vj
δajδai

in its last component. Hence, by the mean

value theorem and Condition 1, for all ε ∈ (0, 1],∣∣∣∣1ε
(
δVj
δaj

(z + r (aε − z ) ; aj − zj)−
δVj
δaj

(z + r(a − z ); aj − zj)

)∣∣∣∣
≤ sup

r, ε∈[0,1]

∣∣∣∣ δ2Vjδajδai
(z + r (aε − z ) ; aj − zj, a

′
i − ai) r

∣∣∣∣ <∞.

Similarly, as a′i − ai ∈ span (Ai), by the twice differentiability of Vi, for all r ∈ (0, 1),
limε↓0

δVi
δai

(z + r (aε − z ) ; a′i − ai) =
δVi
δai

(z + r(a − z ); a′i − ai), and for all r, ε ∈ [0, 1], by the
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mean value theorem, there exists ε̃ ∈ [0, 1] such that∣∣∣∣δViδai
(z + r (aε − z ) ; a′i − ai)

∣∣∣∣ ≤ ∣∣∣∣δViδai
(z + r(a − z ); a′i − ai)

∣∣∣∣
+

∣∣∣∣ δ2Viδaiδai

(
z + r

(
a ε̃ − z

)
; a′i − ai, a

′
i − ai

)
r

∣∣∣∣ . (3.72)

Using Lemma 3.7.2, for all a′i ∈ Ai,

d

dr

δVi
δai

(z + r(a − z ); a′i) =
N∑
j=1

δ2Vi
δaiδaj

(z + r(a − z ); a′i, aj − zj) , (3.73)

which along with (3.72) and Condition 1 implies that

sup
(r,ε)∈[0,1]2

∣∣∣∣δViδai
(z + r (aε − z ) ; a′i − ai)

∣∣∣∣ <∞.

Hence, letting ε→ 0 in (3.71) and using Lebesgue’s dominated convergence theorem give

d

dε
Φ (aε)

∣∣∣∣
ε=0

=

∫ 1

0

N∑
j=1

δ2Vj
δajδai

(z + r(a − z ); aj − zj, a
′
i − ai) rdr

+

∫ 1

0

δVi
δai

(z + r(a − z ); a′i − ai) dr.

Let E : [0, 1] → R be given by

Er :=
N∑
j=1

(
δ2Vj
δajδai

(z + r(a − z ); aj − zj, a
′
i − ai)−

δ2Vi
δaiδaj

(z + r(a − z ); a′i − ai, aj − zj)

)
.

Then by (3.73),

d

dε
Φ (aε)

∣∣∣∣
ε=0

=

∫ 1

0

(
N∑
j=1

δ2Vi
δaiδaj

(z + r(a − z ); a′i − ai, aj − zj) + Er

)
rdr

+

∫ 1

0

δVi
δai

(z + r(a − z ); a′i − ai) dr

=

∫ 1

0

r
d

dr

(
δVi
δai

(z + r(a − z ); a′i − ai)

)
dr

+

∫ 1

0

δVi
δai

(z + r(a − z ); a′i − ai) dr +

∫ 1

0

Errdr

=
δVi
δai

(a ; a′i − ai) +

∫ 1

0

Errdr,

(3.74)
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where the last line uses the integration by part formula. This proves the linear differentia-
bility of Φ.

Now we prove Φ is an α-potential function of G. Let i ∈ [N ], a′i ∈ Ai and a ∈ A(N).
For each ε ∈ [0, 1], let aε = (ai + ε (a′i − ai) , a−i) ∈ A(N). By the differentiability of Vi
and Lemma 3.7.1, d

dε
Vi (a

ε) = δVi
δai

(aε; a′i − ai) for all ε ∈ [0, 1], and ε 7→ δVi
δai

(aε; a′i − ai) is
differentiable on [0, 1]. This implies that ε 7→ Vi (a

ε) is continuously differentiable on [0, 1].
Similarly, by Lemma 3.7.1 and (3.74) and the continuity assumption, [0, 1] ∋ ε 7→ Φ (aε) ∈ R
is also continuously differentiable with d

dε
Φ (aε) = δVi

δai
(aε; a′i − ai) +

∫ 1

0
Er,εrdr, where Er,ε is

given by

Er,ε =
N∑
j=1

(
δ2Vj
δajδai

(z + r(aε − z ); aj − zj, a
′
i − ai)

− δ2Vi
δaiδaj

(z + r(aε − z ); a′i − ai, aj − zj)

)
.

(3.75)

Hence by the fundamental theorem of calculus,

Vi ((a
′
i, a−i))− Vi ((ai, a−i)) =

∫ 1

0

δVi
δai

(aε; a′i − ai) dε

=

∫ 1

0

d

dε
Φ (aε) dε−

∫ 1

0

∫ 1

0

Er,εrdrdε

= Φ((a′i, a−i))− Φ ((ai, a−i))−
∫ 1

0

∫ 1

0

Er,εrdrdε.

(3.76)

Finally, the desired upper bound of α follows from the fact that∣∣∣∣∫ 1

0

∫ 1

0

Er,εrdrdε
∣∣∣∣ ≤ 2 sup

i∈[N ],a′i∈Ai,a ,a ′′∈A(N)

N∑
j=1

∣∣∣∣ δ2Viδaiδaj

(
a ; a′i, a

′′
j

)
− δ2Vj
δajδai

(
a ; a′′j , a

′
i

)∣∣∣∣ .
(3.77)

due to the bilinearity of
δ2Vj
δajδai

and δ2Vi
δaiδaj

, and the fact that
∫ 1

0

∫ 1

0
rdrdϵ = 1

2
. This finishes

the proof.

Proof of Proposition 3.2.2. As we assume that the second-order Fréchet derivative of
Vi for any i ∈ [N ] exists, one can define

δ2Vi
δaiδaj

(z ; ã′i, ã
′′
j ) = ⟨ã′i, ∂2aiajVi(z )ã

′′
j ⟩. (3.78)
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Following the same notation as in the proof of Theorem 3.2.1, by (3.75) and (3.78), as well
as Vj is twice continuously differentiable for any j ∈ [N ],

|Er,ε|

=

∣∣∣∣∣〈a′i − ai,
N∑
j=1

(
∂2aiajVj (z + r(aε − z )) (aj − zj)− ∂2aiajVi (z + r(aε − z )) (aj − zj)

)〉∣∣∣∣∣
≤ ∥a′i − ai∥ · 2 sup

j∈[N ],aj∈Aj

∥aj∥ ·
N∑
j=1

∣∣∣∂2ajaiVj (z + r(aε − z ))− ∂2aiajVi (z + r(aε − z ))
∣∣∣

Then combining (3.76) and (3.77) implies that

|Vi ((a′i, a−i))− Vi ((ai, a−i))− (Φ ((a′i, a−i))− Φ ((ai, a−i)))|

≤
∣∣∣∣∫ 1

0

∫ 1

0

Er,εrdrdε
∣∣∣∣ ≤ ∥a′i − ai∥ · sup

j∈[N ],aj∈Aj

∥aj∥ · sup
a

N∑
j=1

∥∥∥∂2aiajVi (a)− ∂2ajaiVj (a)
∥∥∥ .

3.7.2 Proof of Theorem 3.3.2

The following propositions estimate the moments of the state process Xu and the sensitivity
processes Yu ,u′h and Zu ,u′h,u

′′
ℓ . The proofs of these propositions are included in Section 3.8.1.

Proposition 3.7.3. Suppose Assumption 3.3.2 holds. For each u ∈ Hp(RN), the solution
Xu ∈ Hp(RN) to (3.20) satisfies for all i ∈ [N ], supt∈[0,T ] E[|Xu

t,i|p] ≤ Ci,p
X , with the constant

Ci,p
X defined by Ci,p

X :=
(
|xi|p + (p − 1)∥σi∥pLp + LbT + ∥ui∥pHp(R) +

Lb
y

N

∑N
k=1

(
|xk|p + (p −

1)∥σk∥pLp + LbT + ∥uk∥pHp(R)

))
ecp(L

b+Lb
y+1)T , and cp ≥ 1 is a constant depending only on p.

Proposition 3.7.4. Suppose Assumption 3.3.2 holds and let p ≥ 2. For all u ∈ Hp(RN),
h ∈ [N ] and u′h ∈ Hp(R), the solution Yu,u′h ∈ Hp(RN) of (3.22) satisfies for all i ∈ [N ],

sup
t∈[0,T ]

E[|Y u,u′h
t,i |p] ≤

(
δh,iC

h,p
Y +

(Lby)
p

Np
C̄h,p
Y

)
∥u′h∥

p
Hp(R),

where Ch,p
Y := (2T )p−1epL

bT and C̄h,p
Y := (2T )2p−1ep(L

b+Lb
y)T epL

bT .

Proposition 3.7.5. Suppose Assumption 3.3.2 holds. For all u ∈ Hp(RN), h, ℓ ∈ [N ] with
h ̸= ℓ, and all u′h, u

′′
ℓ ∈ H2(R), the solution Zu,u′h,u

′′
ℓ ∈ Hp(RN) of (3.23) satisfies for all

i ∈ [N ],

sup
t∈[0,T ]

E
[
|Zu,u′h,u

′′
ℓ

t,i |2
]
≤ C(Lby)

2

(
(δh,i + δℓ,i)

1

N2
+

1

N4

)
∥u′h∥2H4(R)∥u′′ℓ∥2H4(R),

where C ≥ 0 is a constant depending only on the upper bounds of T , Lb, Lby.
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We now prove Theorem 3.3.2 based on Propositions 3.7.3, 3.7.4 and 3.7.5.

Proof of Theorem 3.3.2. To simplify the notation, we omit the dependence on u in the
superscript of all processes, i.e., X = Xu ,Yi = Yu ,u′i . We denote by C ≥ 0 a generic
constant depending only on the upper bounds of T , maxi∈[N ] |xi|2, maxi∈[N ] ∥σi∥L2 , Lb, Lby,
maxk∈[N ] ∥uk∥H2(R).

By the definition of
δ2Vj
δujδui

(u ;u′′j , u
′
i) in (3.25) and the fact that Zu ,u′i,u

′′
j = Zu ,u′′j ,u

′
i ,∣∣∣∣ δ2Viδuiδuj

(u ;u′i, u
′′
j )−

δ2Vj
δujδui

(u ;u′′j , u
′
i)

∣∣∣∣
= E

[∫ T

0

{(
Yi
t

u′t,i

)⊤
(
∂2xx∆

f
i,j ∂2xuj∆

f
i,j

∂2uix∆
f
i,j ∂2uiuj∆

f
i,j

)
(t, ·)

(
Yj
t

u′′t,j

)
+
(
Zi,jt
)⊤ (

∂x∆
f
i,j

)
(t, ·)

}
dt

]
+ E

[
(Yi

T )
⊤(∂2xx∆

g
i,j)(XT )Y

j
T + (Zi,jT )⊤(∂x∆

g
i,j)(XT )

]
,

(3.79)

where we write for simplicity ∂2xx∆
f
i,j(t, ·) = ∂2xx(fi − fj)(t,Xt,u t) and similarly for other

derivatives. In the sequel, we derive upper bounds for all terms on the right-hand side of
(3.79).

To estimate the term involving the Hessian of ∆f
i,j in (3.79), observe that for all t ∈ [0, T ],(

Yi
t

u′t,i

)⊤
(
∂2xx∆

f
i,j ∂2xu∆

f
i,j

∂2uix∆
f
i,j ∂2uiuj∆

f
i,j

)
(t, ·)

(
Yj
t

u′′t,j

)

=
N∑

h,ℓ=1

(∂2xhxℓ∆
f
i,j)(t, ·)Y i

t,hY
j
t,ℓ + u′′t,j

N∑
h

(∂2xhuj∆
f
i,j)(t, ·)Y i

t,h

+ u′t,i

N∑
ℓ=1

(∂2uixℓ∆
f
i,j)(t, ·)Y

j
t,ℓ + (∂2uiuj∆

f
i,j)(t, ·)u′t,iu′′t,j.

(3.80)

The first term on the right-hand side of (3.80) satisfies the identity:

N∑
h,ℓ=1

(∂2xhxℓ∆
f
i,j)(t, ·)Y i

t,hY
j
t,ℓ = (∂2xixj∆

f
i,j)(t, ·)Y i

t,iY
j
t,j +

∑
ℓ∈[N ]\{j}

(∂2xixℓ∆
f
i,j)(t, ·)Y i

t,iY
j
t,ℓ

+
∑

h∈[N ]\{i}

(∂2xhxj∆
f
i,j)(t, ·)Y i

t,hY
j
t,j +

∑
h∈[N ]\{i},ℓ∈[N ]\{j}

(∂2xhxℓ∆
f
i,j)(t, ·)Y i

t,hY
j
t,ℓ,
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which yields the following estimate:∣∣∣∣∣E
[∫ T

0

N∑
h,ℓ=1

(∂2xhxℓ∆
f
i,j)(t, ·)Y i

t,hY
j
t,ℓdt

]∣∣∣∣∣ (3.81)

≤ ∥∂2xixj∆
f
i,j∥L∞∥Y i

i Y
j
j ∥H1(R) +

∑
ℓ∈[N ]\{j}

∥∂2xixℓ∆
f
i,j∥L∞∥Y i

i Y
j
ℓ ∥H1(R)

+
∑

h∈[N ]\{i}

∥∂2xhxj∆
f
i,j∥L∞∥Y i

hY
j
j ∥H1(R) +

∑
h∈[N ]\{i},ℓ∈[N ]\{j}

∥∂2xhxℓ∆
f
i,j∥L∞∥Y i

hY
j
ℓ ∥H1(R)

≤ C∥u′i∥H2(R)∥u′′j∥H2(R)

{
∥∂2xixj∆

f
i,j∥L∞ +

Lby
N

( ∑
ℓ∈[N ]\{j}

∥∂2xixℓ∆
f
i,j∥L∞

+
∑

h∈[N ]\{i}

∥∂2xhxj∆
f
i,j∥L∞

)
+

(Lby)
2

N2

( ∑
h∈[N ]\{i}

∑
ℓ∈[N ]\{j}

∥∂2xhxℓ∆
f
i,j∥L∞

)}
. (3.82)

where the second inequality follows from the Cauchy-Schwarz inequality and Proposition
3.7.4. Similarly, using Propositions 3.7.4, the second and third terms in (3.80) can be
bounded by∣∣∣∣∣E

[∫ T

0

u′′t,j

N∑
h=1

(∂2xhuj∆
f
i,j)(t, ·)Y i

t,hdt

]∣∣∣∣∣+
∣∣∣∣∣E
[∫ T

0

u′t,i

N∑
ℓ=1

(∂2uixℓ∆
f
i,j)(t, ·)Y

j
t,ℓdt

]∣∣∣∣∣
≤C∥u′i∥H2(R)∥u′′j∥H2(R)

{
∥∂2xiuj∆

f
i,j∥L∞ + ∥∂2uixj∆

f
i,j∥L∞

+
Lby
N

( ∑
h∈[N ]\{i}

∥∂2xhuj∆
f
i,j∥L∞ +

∑
ℓ∈[N ]\{j}

∥∂uixℓ∆
f
i,j∥L∞

)}
(3.83)

and the fourth term in (3.80) can be bounded by∣∣∣∣E [∫ T

0

(∂2uiuj∆
f
i,j)(t, ·)u′t,iu′′t,jdt

]∣∣∣∣ ≤ ∥u′i∥H2(R)∥u′′j∥H2(R)∥∂2uiuj∆
f
i,j∥L∞ . (3.84)
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Combining (3.82), (3.83), and (3.84) yield the following bound of (3.80):∣∣∣∣∣E
[∫ T

0

(
Yi
t

u′t,i

)⊤
(
∂2xx∆

f
i,j ∂2xuj∆

f
i,j

∂2uix∆
f
i,j ∂2uiuj∆

f
i,j

)
(t, ·)

(
Yj
t

u′′t,j

)
dt

]∣∣∣∣∣
≤ C∥u′i∥H2(R)∥u′′j∥H2(R)

{
∥∂2xixj∆

f
i,j∥L∞ + ∥∂2xiuj∆

f
i,j∥L∞ + ∥∂2uixj∆

f
i,j∥L∞ + ∥∂2uiuj∆

f
i,j∥L∞

+
Lby
N

( ∑
ℓ∈[N ]\{j}

(
∥∂2xixℓ∆

f
i,j∥L∞ + ∥∂2uixℓ∆

f
i,j∥L∞

)
+

∑
h∈[N ]\{i}

(
∥∂2xhxj∆

f
i,j∥L∞

+ ∥∂2xhuj∆
f
i,j∥L∞

))
+

(Lby)
2

N2

( ∑
h∈[N ]\{i},ℓ∈[N ]\{j}

∥∂2xhxℓ∆
f
i,j∥L∞

)}
.

(3.85)

To estimate the term involving the gradient of ∆f
i,j in (3.79), observe that for all t ∈

[0, T ],
(
Zi,jt
)⊤ (

∂x∆
f
i,j

)
(t, ·) =

∑N
h=1(∂xh∆

f
i,j)(t, ·)Z

i,j
t,h. The fundamental theorem of calcu-

lus implies that for all (t, x, u) = (t, (xℓ)
N
ℓ=1, (uℓ)

N
ℓ=1) ∈ [0, T ] ∈ RN × RN and h ∈ [N ],

|(∂xh∆
f
i,j)(t, x, u)| ≤ |(∂xh∆

f
i,j)(t, 0, 0)|+

∑N
ℓ=1(∥∂2xhxℓ∆

f
i,j∥L∞|xℓ|+ ∥∂2xhuℓ∆

f
i,j∥L∞|uℓ|), which

implies that∣∣∣∣∣E
[∫ T

0

N∑
h=1

(∂xh∆
f
i,j)(t, ·)Z

i,j
t,hdt

]∣∣∣∣∣ ≤ ∑
h∈{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2∥Zi,j

h ∥H2(R)

+
N∑
ℓ=1

(∥∂2xhxℓ∆
f
i,j∥L∞∥XℓZ

i,j
h ∥H1(R) + ∥∂2xhuℓ∆

f
i,j∥L∞∥uℓZi,j

h ∥H1(R))
)

+
∑

h∈[N ]\{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2∥Zi,j

h ∥H2(R)

+
N∑
ℓ=1

(∥∂2xhxℓ∆
f
i,j∥L∞∥XℓZ

i,j
h ∥H1(R) + ∥∂2xhuℓ∆

f
i,j∥L∞∥uℓZi,j

h ∥H1(R))
)
.

Then by the Cauchy-Schwarz inequality and Propositions 3.7.3 and 3.7.5,∣∣∣∣∣E
[∫ T

0

N∑
h=1

(∂xh∆
f
i,j)(t, ·)Z

i,j
t,hdt

]∣∣∣∣∣ ≤ C∥u′i∥H4(R)∥u′′j∥H4(R)L
b
y

{
1

N

∑
h∈{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2

+
N∑
ℓ=1

(
∥∂2xhxℓ∆

f
i,j∥L∞ + ∥∂2xhuℓ∆

f
i,j∥L∞

))

+
1

N2

∑
h∈[N ]\{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2 +

N∑
ℓ=1

(
∥∂2xhxℓ∆

f
i,j∥L∞ + ∥∂2xhuℓ∆

f
i,j∥L∞

))}
.

(3.86)
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Finally, using similar arguments as those for (3.82) and (3.86) allows for estimating the
terms involving ∆g

i,j in (3.79):∣∣E [(Yi
T )

⊤(∂2xx∆
g
i,j)(XT )Y

j
T + (Zi,jT )⊤(∂x∆

g
i,j)(XT )

]∣∣
≤ C∥u′i∥H4(R)∥u′′j∥H4(R)

{
∥∂2xixj∆

g
i,j∥L∞ +

Lby
N

( ∑
h∈{i,j}

|(∂xh∆
g
i,j)(0)|

+
∑

h∈{i,j},ℓ∈[N ]

∥∂2xhxℓ∆
g
i,j∥L∞

)
+
Lby
N2

( ∑
h∈[N ]\{i,j}

|(∂xh∆
g
i,j)(0)|

+
∑

h∈[N ]\{i,j},
ℓ∈[N ]

∥∂2xhxℓ∆
g
i,j∥L∞ +

∑
h∈[N ]\{i},ℓ∈[N ]\{j}

∥∂2xhxℓ∆
g
i,j∥L∞

)}
.

(3.87)

Note that the last two terms in the last line can be replaced by
∑

h∈[N ]\{i,j},
ℓ∈[N ]\{i,j}

∥∂2xhxℓ∆
g
i,j∥L∞ ,

as the remaining ones can be absorbed in the terms with 1/N . Consequently, using (3.79)
and grouping the terms in the estimates (3.85), (3.86) and (3.87) according to the orders
1/N and 1/N2 yield∣∣∣∣ δ2Viδuiδuj

(
u ;u′i, u

′′
j

)
− δ2Vj
δujδui

(
u ;u′′j , u

′
i

)∣∣∣∣
≤ C∥u′i∥H4(R)∥u′′j∥H4(R)

(
Ci,j
V,1 + Lby

(
1

N
Ci,j
V,2 +

1

N2
Ci,j
V,3

))
,

where Ci,j
V,1, C

i,j
V,2 and Ci,j

V,3 are given (3.26), (3.27), and (3.28) respectively. This finishes the
proof.

3.7.3 Proof of Theorem 3.4.2

Before proving Theorem 3.4.2, we present several propositions regarding moment estimates
of the state and control processes and their sensitivity processes. The first proposition
estimates the moments of the state process (3.35). The proof follows the exact same line as
that for Proposition 3.7.3 and is therefore omitted.

Proposition 3.7.6. Suppose Assumption 3.3.2 holds and that there exists p ≥ 2 such that
ξi ∈ Lp(Ω;R) for all i ∈ IN . For all ϕ ∈ ΠN , the solution Xϕ to (3.35) satisfies for all i ∈ IN ,

supt∈[0,T ] E[|X
ϕ
t,i|p] ≤ Ci,p

X , where C
i,p
X :=

(
E[|ξi|p]+(p−1)∥σi∥pLp+Lb+ϕT+

Lb+ϕ
y

N

∑N
i=1(E[|ξi|p]+

(p− 1)∥σi∥pLp + Lb+ϕT )
)
ecp(L

b+ϕ+Lb+ϕ
y +1)T , and cp ≥ 1 is a constant depending only on p.

The following propositions estimate the moments of the sensitivity processes of the state
and control variables. The proofs of these propositions are included in Section 3.8.2.
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Proposition 3.7.7. Suppose Assumption 3.3.2 holds and that there exists p ≥ 2 such that
ξi ∈ Lp(Ω;R) for all i ∈ IN . For all ϕ ∈ ΠN , h ∈ IN and ϕ′

h ∈ Π, the solution Yϕ,ϕ′h to
(3.37) satisfies for all i ∈ IN ,

sup
t∈[0,T ]

E[|Y ϕ,ϕ′h
t,i |p] ≤ δh,iC

h,p
Y +

1

Np
C̄h,p
Y ,

where the constants Ch,p
Y and C̄h,p

Y are defined by

Ch,p
Y := cp

(
(Lϕ

′
h)p(1 + Ch,p

X ) + (L
ϕ′h
y )p

1

N

N∑
k=1

Ck,p
X

)
T 2(p−1)epL

b+ϕT ,

and C̄h,p
Y := cp(L

b+ϕ
y )p

(
(Lϕ

′
h)p(1 + Ch,p

X ) + (L
ϕ′h
y )p 1

N

∑N
k=1C

k,p
X

)
T 3p−2ecp(L

b+ϕ+Lb+ϕ
y )T , with

(Ck,p
X )k∈IN defined in Proposition 3.7.6, and a constant cp ≥ 1 depending only on p.

Proposition 3.7.8. Suppose Assumption 3.3.2 holds and that ξi ∈ L4(Ω;R) for all i ∈ IN .
For all ϕ ∈ ΠN , h, ℓ ∈ IN with h ̸= ℓ, and ϕ′

h, ϕ
′′
ℓ ∈ Π, the solution Zϕ,ϕ′h,ϕ

′′
ℓ to (3.38) satisfies

for all i ∈ IN ,

sup
t∈[0,T ]

E
[
|Zϕ,ϕ′h,ϕ

′′
ℓ

t,i |2
]
≤ C

(
(δh,i + δℓ,i)

1

N2
+

1

N4

)
max{Lb+ϕy , L

ϕ′h
y , L

ϕ′′ℓ
y }2,

where C ≥ 0 is a constant depending only on the upper bounds of T , maxi∈IN E[|ξi|4],
maxi∈IN ∥σi∥L4, Lb+ϕ, Lϕ

′
h, Lϕ

′′
ℓ , Lb+ϕy , L

ϕ′h
y and L

ϕ′′ℓ
y .

Proposition 3.7.9. Suppose Assumption 3.3.2 holds that ξi ∈ L4(Ω;R) for all i ∈ IN . For
all ϕ ∈ ΠN , h, ℓ ∈ IN with h ̸= ℓ and ϕ′

h, ϕ
′′
ℓ ∈ Π, let uϕ = (ϕi(·, Xϕ

i ,X
ϕ))i∈IN , let v

ϕ,ϕ′h be
defined in (3.40), and let wϕ,ϕ′h,ϕ

′′
ℓ be defined in (3.41). Then for all i ∈ IN ,

∥uϕi ∥2H2(R) ≤ C, ∥vϕ,ϕ
′
h

i ∥2H2(R) ≤ C

(
δh,i +

1

N2
(Lϕy)

2

)
,

∥wϕ,ϕ
′
h,ϕ

′′
ℓ

i ∥2H2(R) ≤ C

(
(δh,i + δℓ,i)

1

N2
+

1

N4

)
max{Lby, Lϕy , L

ϕ′h
y , L

ϕ′′ℓ
y }2,

where C ≥ 0 is a constant depending only on the upper bounds of T , maxi∈IN E[|ξi|4],
maxi∈IN ∥σi∥L4, Lb, Lϕ, Lϕ

′
h, Lϕ

′′
ℓ , Lby, L

ϕ
y , L

ϕ′h
y and L

ϕ′′ℓ
y .

We are now ready to prove Theorem 3.4.2 based on Propositions 3.7.6, 3.7.7, 3.7.8, and
3.7.9.

Proof of Theorem 3.4.2. To simplify the notation, we omit the dependence on ϕ in the su-
perscript of all processes, i.e., X = Xϕ,Yi = Yϕ,ϕ′i . We denote by C ≥ 0 a generic constant
depending only on the upper bounds of T , maxi∈IN E[|ξi|4], maxi∈IN ∥σi∥L4 , Lb, Lϕ, Lϕ

′
i , Lϕ

′′
j ,

Lby, L
ϕ
y , L

ϕ′i
y and L

ϕ′′j
y .
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By the definition of
δ2Vj
δϕjδϕi

(ϕ;ϕ′′
j , ϕ

′
i) in (3.43) and the fact that Zϕ,ϕ

′
i,ϕ

′′
j = Zϕ,ϕ

′′
j ,ϕ

′
i and

wϕ,ϕ′i,ϕ
′′
j = wϕ,ϕ′′j ,ϕ

′
i ,∣∣∣∣ δ2Viδϕiδϕj

(ϕ;ϕ′
i, ϕ

′′
j )−

δ2Vj
δϕjδϕi

(ϕ;ϕ′′
j , ϕ

′
i)

∣∣∣∣
= E

[∫ T

0

{(
Yi
t

v it

)⊤(
∂2xx∆

f
i,j ∂2xu∆

f
i,j

∂2ux∆
f
i,j ∂2uu∆

f
i,j

)
(t, ·)

(
Yj
t

v jt

)
+

(
Zi,jt
w i,j
t

)⊤(
∂x∆

f
i,j

∂u∆
f
i,j

)
(t, ·)

}
dt

]
+ E

[
(Yi

T )
⊤(∂2xx∆

g
i,j)(XT )Y

j
T + (Zi,jT )⊤(∂x∆

g
i,j)(XT )

]
,

(3.88)

where we write for simplicity ∂2xx∆
f
i,j(t, ·) = ∂2xx(fi − fj)(t,Xt,u t) and similarly for other

derivatives. In the sequel, we derive upper bounds for all terms on the right-hand side of
(3.88).

To estimate the term involving the Hessian of ∆f
i,j in (3.88), observe that for all t ∈ [0, T ],(

Yi
t

v it

)⊤(
∂2xx∆

f
i,j ∂2xu∆

f
i,j

∂2ux∆
f
i,j ∂2uu∆

f
i,j

)
(t, ·)

(
Yj
t

v jt

)
=

N∑
h,ℓ=1

(∂2xhxℓ∆
f
i,j)(t, ·)Y i

t,hY
j
t,ℓ +

N∑
h,ℓ=1

(∂2xhuℓ∆
f
i,j)(t, ·)Y i

t,hv
j
t,ℓ

+
N∑

h,ℓ=1

(∂2uhxℓ∆
f
i,j)(t, ·)vit,hY

j
t,ℓ +

N∑
h,ℓ=1

(∂2uhuℓ∆
f
i,j)(t, ·)vit,hv

j
t,ℓ.

(3.89)

The first term on the right-hand side of (3.89) satisfies the identity:

N∑
h,ℓ=1

(∂2xhxℓ∆
f
i,j)(t, ·)Y i

t,hY
j
t,ℓ = (∂2xixj∆

f
i,j)(t, ·)Y i

t,iY
j
t,j +

∑
ℓ∈IN\{j}

(∂2xixℓ∆
f
i,j)(t, ·)Y i

t,iY
j
t,ℓ

+
∑

h∈IN\{i}

(∂2xhxj∆
f
i,j)(t, ·)Y i

t,hY
j
t,j +

∑
ℓ∈IN\{j}

(∂2xhxℓ∆
f
i,j)(t, ·)Y i

t,hY
j
t,ℓ

 ,

which yields the following estimate:∣∣∣∣∣E
[∫ T

0

N∑
h,ℓ=1

(∂2xhxℓ∆
f
i,j)(t, ·)Y i

t,hY
j
t,ℓdt

]∣∣∣∣∣ ≤ ∥∂2xixj∆
f
i,j∥L∞∥Y i

i Y
j
j ∥H1(R) (3.90)

+
∑

ℓ∈IN\{j}

∥∂2xixℓ∆
f
i,j∥L∞∥Y i

i Y
j
ℓ ∥H1(R)

+
∑

h∈IN\{i}

∥∂2xhxj∆
f
i,j∥L∞∥Y i

hY
j
j ∥H1(R) +

∑
ℓ∈IN\{j}

∥∂2xhxℓ∆
f
i,j∥L∞∥Y i

hY
j
ℓ ∥H1(R)

 ,
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and

(3.90) ≤ C

{
∥∂2xixj∆

f
i,j∥L∞ +

Lb+ϕy

N

( ∑
ℓ∈IN\{j}

∥∂2xixℓ∆
f
i,j∥L∞ +

∑
h∈IN\{i}

∥∂2xhxj∆
f
i,j∥L∞

)

+
(Lb+ϕy )2

N2

∑
h∈IN\{i}

∑
ℓ∈IN\{j}

∥∂2xhxℓ∆
f
i,j∥L∞

}
, (3.91)

where the second inequality follows from using the Cauchy-Schwarz inequality and Proposi-
tion 3.7.7.

Similarly, using Propositions 3.7.7 and 3.7.9, the second and third terms in (3.89) can be
bounded by∣∣∣∣∣E

[∫ T

0

N∑
h,ℓ=1

(∂2xhuℓ∆
f
i,j)(t, ·)Y i

t,hv
j
t,ℓdt

]∣∣∣∣∣+
∣∣∣∣∣E
[∫ T

0

N∑
h,ℓ=1

(∂2uhxℓ∆
f
i,j)(t, ·)vit,hY

j
t,ℓdt

]∣∣∣∣∣
≤C

{
∥∂2xiuj∆

f
i,j∥L∞ + ∥∂2uixj∆

f
i,j∥L∞ +

max{Lϕy , Lb+ϕy }
N

( ∑
ℓ∈IN\{j}

(∥∂2xiuℓ∆
f
i,j∥L∞

+ ∥∂2uixℓ∆
f
i,j∥L∞) +

∑
h∈IN\{i}

(∥∂2xhuj∆
f
i,j∥L∞ + ∥∂2uhxj∆

f
i,j∥L∞)

)

+
max{Lϕy , Lb+ϕy }2

N2

∑
h∈IN\{i}
ℓ∈IN\{j}

(∥∂2xhuℓ∆
f
i,j∥L∞ + ∥∂2uhxℓ∆

f
i,j∥L∞)

}
,

(3.92)

and the fourth term in (3.89) can be bounded by∣∣∣∣∣E
[∫ T

0

N∑
h,ℓ=1

(∂2uhuℓ∆
f
i,j)(t, ·)vit,hv

j
t,ℓdt

]∣∣∣∣∣ ≤ C

{
∥∂2uiuj∆

f
i,j∥L∞ +

Lϕy
N

( ∑
ℓ∈IN\{j}

∥∂2uiuℓ∆
f
i,j∥L∞

+
∑

h∈IN\{i}

∥∂2uhuj∆
f
i,j∥L∞

)
+

∑
h∈IN\{i}
ℓ∈IN\{j}

∥∂2uhuℓ∆
f
i,j∥L∞

(Lϕy)
2

N2

}
. (3.93)

Combining (3.91), (3.92) and (3.93) and setting Ly = max{Lby, Lϕy , L
ϕ′i
y , L

ϕ′′j
y } yield the bound
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of (3.89):∣∣∣∣∣E
[∫ T

0

(
Yi
t

v it

)⊤(
∂2xx∆

f
i,j ∂2xu∆

f
i,j

∂2ux∆
f
i,j ∂2uu∆

f
i,j

)
(t, ·)

(
Yj
t

v jt

)
dt

]∣∣∣∣∣ (3.94)

≤ C

{
∥∂2xixj∆

f
i,j∥L∞ + ∥∂2xiuj∆

f
i,j∥L∞ + ∥∂2uixj∆

f
i,j∥L∞ + ∥∂2uiuj∆

f
i,j∥L∞

+
Ly
N

( ∑
ℓ∈IN\{j}

(
∥∂2xixℓ∆

f
i,j∥L∞ + ∥∂2xiuℓ∆

f
i,j∥L∞ + ∥∂2uixℓ∆

f
i,j∥L∞ + ∥∂2uiuℓ∆

f
i,j∥L∞

)
+

∑
h∈IN\{i}

(
∥∂2xhxj∆

f
i,j∥L∞ + ∥∂2xhuj∆

f
i,j∥L∞ + ∥∂2uhxj∆

f
i,j∥L∞ + ∥∂2uhuj∆

f
i,j∥L∞

))

+
Ly
N2

∑
h∈IN\{i},
ℓ∈IN\{j}

(
∥∂2xhxℓ∆

f
i,j∥L∞ + |∂2xhuℓ∆

f
i,j∥L∞ + ∥∂2uhxℓ∆

f
i,j∥L∞ + ∥∂2uhuℓ∆

f
i,j∥L∞

)}
.

To estimate the term involving the gradient of ∆f
i,j in (3.88), note that(

Zi,jt
w i,j
t

)⊤(
∂x∆

f
i,j

∂u∆
f
i,j

)
(t, ·) =

N∑
h=1

(∂xh∆
f
i,j)(t, ·)Z

i,j
t,h +

N∑
h=1

(∂uh∆
f
i,j)(t, ·)w

i,j
t,h,

for all t ∈ [0, T ]. The fundamental theorem of calculus implies that for all h ∈ IN and
(t, x, u) ∈ [0, T ] ∈ RN × RN ,

|(∂xh∆
f
i,j)(t, x, u)| ≤ |(∂xh∆

f
i,j)(t, 0, 0)|+

N∑
ℓ=1

(
∥∂2xhxℓ∆

f
i,j∥L∞|xℓ|+ ∥∂2xhuℓ∆

f
i,j∥L∞ |uℓ|

)
,

which implies that∣∣∣∣∣E
[∫ T

0

N∑
h=1

(∂xh∆
f
i,j)(t, ·)Z

i,j
t,hdt

]∣∣∣∣∣ ≤ ∑
h∈{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2∥Zi,j

h ∥H2(R)

+
N∑
ℓ=1

(
∥∂2xhxℓ∆

f
i,j∥L∞∥XℓZ

i,j
h ∥H1(R) + ∥∂2xhuℓ∆

f
i,j∥L∞∥uℓZi,j

h ∥H1(R)

))

+
∑

h∈IN\{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2∥Zi,j

h ∥H2(R) +
N∑
ℓ=1

(
∥∂2xhxℓ∆

f
i,j∥L∞∥XℓZ

i,j
h ∥H1(R)

+ ∥∂2xhuℓ∆
f
i,j∥L∞∥uℓZi,j

h ∥H1(R)
))
.
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Then by the Cauchy-Schwarz inequality and Propositions 3.7.6, 3.7.8 and 3.7.9,∣∣∣∣∣E
[∫ T

0

N∑
h=1

(∂xh∆
f
i,j)(t, ·)Z

i,j
t,hdt

]∣∣∣∣∣
≤ CLy

{
1

N

∑
h∈{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2 +

N∑
ℓ=1

(
∥∂2xhxℓ∆

f
i,j∥L∞ + ∥∂2xhuℓ∆

f
i,j∥L∞

))

+
1

N2

∑
h∈IN\{i,j}

(
∥(∂xh∆

f
i,j)(·, 0, 0)∥L2 +

N∑
ℓ=1

(
∥∂2xhxℓ∆

f
i,j∥L∞ + ∥∂2xhuℓ∆

f
i,j∥L∞

))}
.

(3.95)

where Ly = max{Lby, Lϕy , L
ϕ′i
y , L

ϕ′′j
y }. Similar estimates show that∣∣∣∣∣E

[∫ T

0

N∑
h=1

(∂uh∆
f
i,j)(t, ·)w

i,j
t,hdt

]∣∣∣∣∣ ≤ CLy

{
1

N

∑
h∈{i,j}

(
∥(∂uh∆

f
i,j)(·, 0, 0)∥L2

+
N∑
ℓ=1

(∥∂2uhxℓ∆
f
i,j∥L∞ + ∥∂2uhuℓ∆

f
i,j∥L∞)

)
+

1

N2

∑
h∈IN\{i,j}

(
∥(∂uh∆

f
i,j)(·, 0, 0)∥L2 +

N∑
ℓ=1

(
∥∂2uhxℓ∆

f
i,j∥L∞ + ∥∂2uhuℓ∆

f
i,j∥L∞

))}
.

(3.96)

Finally, using similar arguments as those for (3.91) and (3.95) allows for estimating the
terms involving ∆g

i,j in (3.88):∣∣E [(Yi
T )

⊤(∂2xx∆
g
i,j)(XT )Y

j
T + (Zi,jT )⊤(∂x∆

g
i,j)(XT )

]∣∣
≤ C

{
∥∂2xixj∆

g
i,j∥L∞ + Ly

[
1

N

( ∑
h∈{i,j}

|(∂xh∆
g
i,j)(0)|+

∑
h∈{i,j},ℓ∈IN

∥∂2xhxℓ∆
g
i,j∥L∞

)

+
1

N2

( ∑
h∈IN\{i,j}

|(∂xh∆
g
i,j)(0)|+

∑
h∈IN\{i,j},ℓ∈IN

∥∂2xhxℓ∆
g
i,j∥L∞

+
∑

h∈IN\{i},ℓ∈IN\{j}

∥∂2xhxℓ∆
g
i,j∥L∞

)]}
.

(3.97)

Note that the last two terms in the last line can be replaced by
∑

h∈IN\{i,j},ℓ∈IN\{i,j} ∥∂2xhxℓ∆
g
i,j∥L∞ ,

as the remaining ones can be absorbed in the terms with 1/N .
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Consequently, by using (3.88) and grouping the terms in the estimates (3.94), (3.95),
(3.96) and (3.97) according to the orders 1/N and 1/N2, we have∣∣∣∣ δ2Viδϕiδϕj

(ϕ;ϕ′
i, ϕ

′′
j )−

δ2Vj
δϕjδϕi

(ϕ;ϕ′′
j , ϕ

′
i)

∣∣∣∣ ≤ C

(
Ci,j
V,1 + Ly

(
1

N
Ci,j
V,2 +

1

N2
Ci,j
V,3

))
,

where Ci,j
V,1, C

i,j
V,2, and C

i,j
V,2 are given in (3.44), (3.45), and (3.46). This finishes the proof.

3.7.4 Proof of Theorem 3.6.1

Proof of Theorem 3.6.1. It suffices to show u∗ is a minimizer of (3.65) over H2(RN). Define
V̂ : [0, T ]× P2(S) → R such that for all (t, µ) ∈ [0, T ]× P2(S),

V̂ (t, µ) = tr(M0(t)µ2) +

(
µ
µ1

)⊤

M1(t)

(
µ
µ1

)
+ 2M2(t)

⊤
(
µ
µ1

)
+M3(t),

where µ :=
∫
S xµ(d(x, r)), µ1 :=

∫
S rxµ(d(x, r)), µ2 :=

∫
S xx

⊤µ(d(x, r)), and
M3 ∈ C([0, T ];R) satisfies

Ṁ3 + tr

(
ΣΣ⊤

(
M0 +

(
I2N
1
2
I2N

)⊤

M1

(
I2N
1
2
I2N

)))
− (ĨM2)

⊤ĨM2 = 0; M3(T ) = 0.

We shall prove V̂ satisfies the optimality condition (3.51). In the sequel, the time variable
of all coefficients will be dropped when there is no risk of confusion.

Let u ∈ H2(RN), let Xr,u ∈ S2(R2N) satisfy (3.64), and let µr,u
t := L(Xr,u

t , r|Ft) for all t.
By Itô’s formula in [65] (see also [33, Theorem 4.17]),

V̂ (T, µr,u
T )− V̂ (0, µr,u

0 ) = Ē

[∫ T

0

{
(∂tV̂ )(t, µr,u

t ) +
(
A(t)X̃r̃,u

t + Ir̃u t

)⊤
∂
x

δV̂

δµ
(t, µr,u

t , X̃r̃,u
t , r̃)

+
1

2
tr

(
Σ(t)Σ(t)⊤∂2

xx

δV̂

δµ
(t, µr,u

t , X̃r̃,u
t , r̃)

)

+
1

2
tr

(
Σ(t)Σ(t)⊤∂2

xx
′
δ2V̂

δ2µ
(t, µr,u

t , X̃r̃,u
t , r̃, X̂r̂,u

t , r̂)

)}
dt

∣∣∣∣∣FT

]
,

(3.98)

where (X̃r̃,u , r̃) and (X̂r̂,u , r̂) are conditional independent copies of (Xr,u , r) given FT defined
on an enlarged probability space (Ω̄, F̄ , P̄) with FT ⊂ F̄ , and Ē[·|FT ] is the conditional
expectation in the enlarged probability space.

We now compute the right-hand side of (3.98). Note that u and µr,u are measurable

with respect to FT , and µ
r,u
t = L(X̃r̃,u , r̃t|FT ) = L(X̂r̂,u

t , r̂|FT ) for all t ∈ [0, T ]. Hence for all
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t ∈ [0, T ], by the symmetry of M0(t) and M1(t),

Ē

[(
A(t)X̃r̃,u

t + Ir̃u t

)⊤
∂
x

δV̂

δµ
(t, µr,u

t , X̃r̃,u
t , r̃)

∣∣∣∣∣FT

]

=2

∫
S
(A(t)x+ Iru t)

⊤

(
M0(t)x+

(
I2N
rI2N

)⊤

M1(t)

(
µr,u
t

(µr,u
t )1

)
+

(
I2N
rI2N

)⊤

M2(t)

)
dµr,u

t (x, r)

=2

{
tr
(
A⊤M0(µ

r,u
t )2

)
+

(
µr,u
t

(µr,u
t )1

)⊤

M1

(
A 02N

02N A

)(
µr,u
t

(µr,u
t )1

)

+M⊤
2

(
A 02N

02N A

)(
µr,u
t

(µr,u
t )1

)
+ u⊤

t

[
KM0,M1

(
µr,u
t

(µr,u
t )1

)
+ ĨM2

]}
,

(3.99)
where the last term used the fact that the marginal distribution of µr,u

t on [0, 1] is the uniform
distribution. Moreover,

1

2
tr

(
Σ(t)Σ(t)⊤∂2

xx

δV̂

δµ
(t, µr,u

t , X̃r̃,u
t , r̃)

)
= tr

(
Σ(t)Σ(t)⊤M0(t)

)
,

1

2
tr

(
Σ(t)Σ(t)⊤∂2

xx
′
δ2V̂

δ2µ
(t, µr,u

t , X̃r̃,u
t , r̃, X̂r̂,u

t , r̂)

)
= tr

(
Σ(t)Σ(t)⊤

(
I2N
1
2
I2N

)⊤

M1(t)

(
I2N
1
2
I2N

))
.

(3.100)

Observe further that for all t ∈ [0, T ], by completing the squares,

u⊤
t 2

[
KM0,M1

(
µr,u
t

(µr,u
t )1

)
+ ĨM2

]

≥ −u⊤
t u t −

[
KM0,M1

(
µr,u
t

(µr,u
t )1

)
+ ĨM2

]⊤ [
KM0,M1

(
µr,u
t

(µr,u
t )1

)
+ ĨM2

]

≥ −
∫
S
2ru⊤

t u tdµ
r,u
t −

(
µr,u
t

(µr,u
t )1

)⊤

K⊤
M0,M1

KM0,M1

(
µr,u
t

(µr,u
t )1

)

− 2(ĨM2)
⊤KM0,M1

(
µr,u
t

(µr,u
t )1

)
− (ĨM2)

⊤ĨM2.

(3.101)

Hence combining (3.98), (3.99), (3.100), and (3.101), and using the ODEs for M0, M1 and
M2 yield

V̂ (T, µr,u
T )− V̂ (0, µr,u

0 ) ≥
∫ T

0

−
∫
S
(x⊤Qx+ 2ru⊤

t u t)dµ
r,u
t dt, (3.102)
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from which, by using V̂ (T, µr,u
T ) =

∫
S

(
x
⊤Q̄x+ 2p⊤x

)
dµr,u

T and taking the expectation, we
obtain that

V̂
(
0, δvcat(x1,...,xN ,0N2d)

⊗ Unif(0, 1)
)
≤ Φ(u), ∀u ∈ H2(RN).

Finally, consider the feedback map â(t, µ) := −
[
KM0,M1(t)

(
µ
µ1

)
+ ĨM2(t)

]
for all (t, µ) ∈

[0, T ] × P2(S). Since r is fixed, by [50, Theorem A.3] and the boundedness of KM0,M1 and
M2, the dynamics

dXt =
(
A(t)Xt + Irâ

(
t,L(Xt, r | Ft)

))
dt+ Σ(t)dWt, X0 = vcat(x1, · · · , xN , 0N), (3.103)

admits a unique G-adapted strong solution (X̂, r) satisfying E[supt∈[0,T ] ||X̂t|p] < ∞ for any

p ≥ 2. Thus the control u∗
t = â

(
t,L(X̂t, r | Ft)

)
, t ∈ [0, T ], is in A(N) =

∏
i∈[N ] Ai, and

achieves the equality in (3.101). This implies (3.102) is an equality and hence u∗ is the
minimizer of Φ. Since Φ is the αN -potential function of GLQ, u

∗ is an αN -NE of GLQ by
Proposition 3.2.1.

To derive that dynamics of Ft :=

(
E[Xr,u∗

t |Ft]

E[rXr,u∗

t |Ft]

)
, t ∈ [0, T ], using (3.103),

d

(
Xr,u∗

t

rXr,u∗

t

)
=

((
A(t) 02N

02N A(t)

)(
Xr,u∗

t

rXr,u∗

t

)
−
(
Ir

rIr

)[
KM0,M1(t)

(
E[Xr,u∗

t |Ft]

E[rXr,u∗

t |Ft]

)
+ ĨM2(t)

])
dt

+

(
Σ(t)
rΣ(t)

)
dWt.

For each t ∈ [0, T ], taking the conditional expectation with respect to Ft, applying the
conditional Fubini Theorem and using the independence between r and Ft yield the dynamics
(3.70) of F . This completes the proof.

3.8 Proofs of Technical Lemmas and Propositions

The following lemma quantifies the growth of f ∈ F 0,2([0, T ] × R × RN ;R) in the space
variables, which will be used to prove Proposition 3.7.3 (and also Proposition 3.7.6). The
proof follows directly from the mean value theorem and hence is omitted.

Lemma 3.8.1. Let f ∈ F 0,2([0, T ]×R×RN ;R). Then for all t ∈ [0, T ], x ∈ R and y ∈ RN ,

|f(t, x, y)| ≤ Lf (1 + |x|) + Lf
y

N

∑N
i=1 |yi|.

Proof of Proposition 3.7.3. Throughout this proof, we write X = Xu for notational simplic-
ity. By (3.20) and Itô’s formula, for all t ∈ [0, T ],

d|Xt,i|p = |Xt,i|p−2

(
pXt,i (ut,i + bi(t,Xt,i,Xt)) +

p(p− 1)

2
σ2
i (t)

)
dt+ p|Xt,i|p−2Xt,iσi(t)dW

i
t ,

Xp
0,i = xpi .
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Taking the expectation of both sides and using the fact that
(∫ t

0
|Xu,i|p−2Xu,iσi(u)dW

i
u

)
t≥0

is a martingale (see [160, Problem 2.10.7]) yield that

E[|Xt,i|p] ≤|xi|p + E

[∫ t

0

(
p|Xs,i|p−1

(
|ui(s)|+ Lb(1 + |Xs,i|) +

Lby
N

N∑
k=1

|Xs,k|

)

+ |Xs,i|p−2p(p− 1)

2
σ2
i (s)

)
ds

]
.

By Young’s inequality, for all a, b ≥ 0, ab ≤ p−1
p
ap/(p−1) + 1

p
bp and ab ≤ p−2

p
ap/(p−2) + 2

p
bp/2 if

p > 2. Hence

E[|Xt,i|p] ≤ |xi|p + E
[ ∫ t

0

(
(p− 1)|Xs,i|p + |ui(s)|p + Lb(1 + (2p− 1)|Xs,i|p)

+
Lby
N

N∑
k=1

((p− 1)|Xs,i|p + |Xs,k|p) +
p(p− 1)

2

(
p− 2

p
|Xs,i|p +

2

p
|σi(s)|p

))
ds

]
≤ |xi|p + (p− 1)∥σi∥pLp + LbT + ∥ui∥pHp(R)

+

∫ t

0

((
Lb(2p− 1) + Lby(p− 1) +

(p− 1)p

2

)
E[|Xs,i|p] +

Lby
N

N∑
k=1

E[|Xs,k|p]
)
ds.

(3.104)

Summing up the above equation over the index i ∈ [N ] yields for all t ∈ [0, T ],

N∑
i=1

E[|Xt,i|p] ≤
N∑
i=1

(
|xi|p + (p− 1)∥σi∥pLp + LbT + ∥ui∥pHp(R)

)
+

∫ t

0

((
Lb(2p− 1) + Lbyp+

(p− 1)p

2

) N∑
k=1

E[|Xs,k|p]
)
ds,

which along with Gronwall’s inequality implies that

N∑
k=1

E[|Xt,k|p] ≤
N∑
k=1

(
|xk|p + (p− 1)∥σk∥pLp + LbT + ∥uk∥pHp(R)

)
ecp(L

b+Lb
y+1)T ,

for a constant cp ≥ 1 depending only on p. Substituting the above inequality into (3.104)
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and applying Gronwall’s inequality yield

E[|Xt,i|p] ≤ |xi|p + (p− 1)∥σi∥pLp + LbT +

∫ t

0

cp
(
Lb + Lby + 1

)
E[|Xs,i|p]ds

+
Lby
N

N∑
k=1

(
|xk|p + (p− 1)∥σk∥pLp + LbT + ∥uk∥pHp(R)

)
ecp(L

b+Lb
y+1)T

≤
(
|xi|p + (p− 1)∥σi∥pLp + LbT + ∥ui∥pHp(R)

+
Lby
N

N∑
k=1

(
|xk|p + (p− 1)∥σk∥pLp + LbT + ∥uk∥pHp(R)

)
ecp(L

b+Lb
y+1)T

)
ecp(L

b+Lb
y+1)T .

This finishes the proof.

The following lemma will be used to estimate the sensitivity processes.

Lemma 3.8.2. Let p ≥ 2 and for each i, j ∈ [N ], let Bi, B̄i,j : Ω × [0, T ] → R be bounded
adapted processes, and fi ∈ Hp(R). Let S = (Si)

N
i=1 ∈ Sp(RN) satisfy the following dynamics:

for all t ∈ [0, T ],

dSt,i =

(
Bi(t)St,i +

N∑
j=1

B̄ij(t)St,j + ft,i

)
dt, S0,i = 0; ∀i = 1, · · · , N. (3.105)

Then for all i ∈ [N ],

sup
t∈[0,T ]

E[|St,i|p] ≤ (2T )p−1

∥fi∥pHp(R) +

∥∥∥∥∥
N∑
k=1

|fk|

∥∥∥∥∥
p

Hp(R)

∥B̄∥p∞T pep(∥B∥∞+N∥B̄∥∞)T

 ep∥B∥∞T .

where ∥B∥∞ = maxi∈[N ] ∥Bi∥L∞ and ∥B̄∥∞ = maxi,j∈[N ] ∥B̄i,j∥L∞.

Proof. By (3.105), for all t ∈ [0, T ] and i ∈ [N ],

|St,i| ≤
∫ t

0

(
∥B∥∞|Su,i|+ ∥B̄∥∞

N∑
k=1

|Su,k|+ |fu,i|

)
du. (3.106)

Summarizing (3.106) over the index i ∈ [N ] yields for all t ∈ [0, T ],

N∑
k=1

|St,k| ≤
∫ t

0

(
(∥B∥∞ +N∥B̄∥∞)

N∑
k=1

|Su,k|+
N∑
k=1

|fu,k|

)
du,

which along with Gronwall’s inequality implies that

N∑
k=1

|St,k| ≤

(∫ T

0

N∑
k=1

|fu,i| du

)
e(∥B∥∞+N∥B̄∥∞)t.
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Substituting the above inequality into (3.106) yields for all t > 0,

|St,i| ≤
∫ t

0

∥B∥∞|Su,i|du+

((∫ T

0

N∑
k=1

|fu,i| du

)∫ T

0

∥B̄∥∞e(∥B∥∞+N∥B̄∥∞)udu

)
+

∫ T

0

|fu,i|du.

This with Gronwall’s inequality shows that for all t > 0,

|St,i| ≤

(∫ T

0

|fu,i|du+

(∫ T

0

N∑
k=1

|fu,k| du

)
∥B̄∥∞Te(∥B∥∞+N∥B̄∥∞)T

)
e∥B∥∞T .

Taking the p-th moments of both sides of the above inequality and using the fact that
(a+ b)p ≤ 2p−1(ap + bp) for all a, b ≥ 0 yield

E[|St,i|p] ≤ E

[(∫ T

0

|fu,i|du+

(∫ T

0

N∑
k=1

|fu,k| du

)
∥B̄∥∞Te(∥B∥∞+N∥B̄∥∞)T

)p]
ep∥B∥∞T

≤ 2p−1E

[(∫ T

0

|fu,i|du
)p

+

(∫ T

0

N∑
k=1

|fu,k| du

)p

∥B̄∥p∞T pep(∥B∥∞+N∥B̄∥∞)T

]
ep∥B∥∞T

≤ (2T )p−1

∥fi∥pHp(R) +

∥∥∥∥∥
N∑
k=1

|fk|

∥∥∥∥∥
p

Hp(R)

∥B̄∥p∞T pep(∥B∥∞+N∥B̄∥∞)T

 ep∥B∥∞T .

This proves the desired estimate.

3.8.1 Proofs of Propositions 3.7.4 and 3.7.5

Proof of Proposition 3.7.4. To simplify the notation, we write X = Xu and Yh = Yu ,u′h .
Applying Lemma 3.8.2 with S = Yh, Bi(t) = ∂xbi(t,Xt,i,Xt), B̄i,j(t) = ∂yjbi(t,Xt,i,Xt) and
ft,i = δh,iu

′
t,h yields that for all i ∈ [N ],

sup
t∈[0,T ]

E[|Y h
t,i|p] ≤ (2T )p−1

∥fi∥pHp(R) +

∥∥∥∥∥
N∑
k=1

|fk|

∥∥∥∥∥
p

Hp(R)

(Lby)
p

Np
T pep(L

b+Lb
y)T

 epL
bT

≤ (2T )p−1

(
δh,i +

(Lby)
p

Np
T pep(L

b+Lb
y)T

)
∥u′h∥

p
Hp(R)e

pLbT .

(3.107)

where we used ∥B̄i,j∥L∞ ≤ Lb/N .

Finally, to prove Proposition 3.7.5, we estimate the moment of the process f
u ,u′h,u

′′
ℓ

i defined
in (3.24).
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Lemma 3.8.3. Suppose Assumption 3.3.2 holds. For all u ∈ H2(RN), i, h, ℓ ∈ [N ] with

h ̸= ℓ, and all u′h, u
′′
ℓ ∈ H4(R), the process f

u,u′h,u
′′
ℓ

i defined in (3.24) satisfies

∥fu,u
′
h,u

′′
ℓ

i ∥H2(R) ≤ C

(
(δh,i + δℓ,i)

1

N
+

1

N2

)
Lby∥u′h∥H4(R)∥u′′ℓ∥H4(R),

where C ≥ 0 is a constant depending only on the upper bounds of T , Lb and Lby.

Proof. Fix h, ℓ ∈ [N ] with h ̸= ℓ. To simplify the notation, we write X = Xu , Yh = Yu ,u′h

and Yℓ = Yu ,u′′ℓ . Observe that by Proposition 3.7.4, for all i, j ∈ [N ],∥∥Y h
i Y

ℓ
j

∥∥2
H2(R) ≤ T sup

t∈[0,T ]
E[|Y h

t,iY
ℓ
t,j|2] ≤ T sup

t∈[0,T ]
E[|Y h

t,i|4]
1
2E[|Y ℓ

t,j|4]
1
2

≤ T∥u′h∥2H4(R)∥u′′ℓ∥2H4(R)

(
δh,iC

h,4
Y +

(Lby)
4

N4
C̄h,4
Y

) 1
2
(
δℓ,jC

ℓ,4
Y +

(Lby)
4

N4
C̄ℓ,4
Y

) 1
2

≤ T∥u′h∥2H4(R)∥u′′ℓ∥2H4(R)

×
(
δh,iδℓ,j(C

h,4
Y Cℓ,4

Y )
1
2 +

(Lby)
2

N2

(
δh,i(C

h,4
Y C̄ℓ,4

Y )
1
2 + δℓ,j(C

ℓ,4
Y C̄h,4

Y )
1
2

)
+

(Lby)
4

N4
(C̄h,4

Y C̄ℓ,4
Y )

1
2

)
≤ C∥u′h∥2H4(R)∥u′′ℓ∥2H4(R)

(
δh,iδℓ,j +

(Lby)
2

N2
(δh,i + δℓ,j) +

(Lby)
4

N4

)
,

(3.108)

where the third line follows by noting
√
a1 + · · ·+ aN ≤ √

a1+· · ·+√
aN for any a1, · · · , aN ≥

0.
We now bound each term in (3.24). Observe that by (3.24), for all t ∈ [0, T ],

f
u ,u′h,u

′′
ℓ

t,i = (∂2xxbi)(t,Xt,i,Xt)Y
h
t,iY

ℓ
t,i +

N∑
j=1

(∂2xyjbi)(t,Xt,i,Xt)(Y
h
t,iY

ℓ
t,j + Y ℓ

t,iY
h
t,j)

+
N∑

j,k=1

(∂2yjykbi)(t,Xt,i,Xt)Y
h
t,jY

ℓ
t,k.

(3.109)

Apply (3.108) with the fact that δh,iδℓ,i = 0 as h ̸= ℓ to get

∥(∂2xxbi)(·, X·,i,X·)Y
h
i Y

ℓ
i ∥H2(R) ≤ Lb∥Y h

i Y
ℓ
i ∥2H2(R)

≤ C∥u′h∥H4(R)∥u′′ℓ∥H4(R)

(
(δh,i + δℓ,i)

Lby
N

+
(Lby)

2

N2

)
,

(3.110)

where C is a constant depending on T , Ch,4
Y and C̄h,4

Y for any h ∈ [N ].
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We then estimate
∑N

j=1(∂
2
xyj
bi)(·, X·,i,X·)(Y

h
i Y

ℓ
j + Y ℓ

i Y
h
j ) in (3.109). The fact that ∂2xyjbi

is bounded by Lby/N and the inequality that (
∑N

k=1 ak)
2 ≤ N

∑N
k=1 a

2
k for all a1, a2, · · · , aN ∈

[0,∞) show that∥∥∥∥∥
N∑
j=1

(∂2xyjbi)(·, X·,i,X·)(Y
h
i Y

ℓ
j + Y ℓ

i Y
h
j )

∥∥∥∥∥
2

H2(R)

≤
(Lby)

2

N2

∥∥∥∥∥
N∑
j=1

(|Y h
i Y

ℓ
j |+ |Y ℓ

i Y
h
j |)

∥∥∥∥∥
2

H2(R)

=
(Lby)

2

N2

∥∥∥∥∥|Y h
i Y

ℓ
ℓ |+ |Y ℓ

i Y
h
h |+

∑
j ̸=ℓ

|Y h
i Y

ℓ
j |+

∑
j ̸=h

|Y ℓ
i Y

h
j |

∥∥∥∥∥
2

H2(R)

≤ 4
(Lby)

2

N2

(
∥Y h

i Y
ℓ
ℓ ∥2H2(R) + ∥Y ℓ

i Y
h
h ∥2H2(R) +

∥∥∥∥∑
j ̸=ℓ

|Y h
i Y

ℓ
j |
∥∥∥∥2
H2(R)

+

∥∥∥∥∑
j ̸=h

|Y ℓ
i Y

h
j |
∥∥∥∥2
H2(R)

)

≤ 4
(Lby)

2

N2

(
∥Y h

i Y
ℓ
ℓ ∥2H2(R) + ∥Y ℓ

i Y
h
h ∥2H2(R) + (N − 1)

(∑
j ̸=ℓ

∥Y h
i Y

ℓ
j ∥2H2(R) +

∑
j ̸=h

∥Y ℓ
i Y

h
j ∥2H2(R)

))
,

which along with (3.108) yields∥∥∥∥∥
N∑
j=1

(∂2xyjbi)(·, X·,i,X·)(Y
h
i Y

ℓ
j + Y ℓ

i Y
h
j )

∥∥∥∥∥
2

H2(R)

≤
4(Lby)

2

N2
C∥u′h∥2H4(R)∥u′′ℓ∥2H4(R)

[(
δh,i +

(Lby)
2

N2
(δh,i + 1) +

(Lby)
4

N4

)
+

(
δℓ,i +

(Lby)
2

N2
(1 + δℓ,i) +

(Lby)
4

N4

)
+
N − 1

N2

(
δh,i +

(Lby)
2

N2
+ δℓ,i +

(Lby)
2

N2

)]
,

≤ C∥u′h∥2H4(R)∥u′′ℓ∥2H4(R)

(
(δh,i + δℓ,i)

(Lby)
2

N2
+

(Lby)
4

N4

)
. (3.111)

Finally, we estimate
∑N

j,k=1(∂
2
yjyk

bi)(t,Xi,X)Y h
j Y

ℓ
k in (3.109). We write for simplicity

(∂2yjykbi)(·) = (∂2yjykbi)(·, X·,i,X·) for all j, k ∈ [N ]. Since h ̸= ℓ, [N ] × [N ] = {(h, ℓ)} ∪
{(h, h)} ∪ {(ℓ, ℓ)} ∪

{
(h, k) | k ∈ [N ] \ {h, ℓ}

}
∪
{
(j, ℓ) | j ∈ [N ] \ {h, ℓ}

}
∪
{
(j, k) | j ∈

[N ] \ {h}, k ∈ [N ] \ {ℓ}
}
, and hence

N∑
j,k=1

(∂2yjykbi)(·)Y
h
j Y

ℓ
k = (∂2yhyℓbi)(·)Y

h
h Y

ℓ
ℓ + (∂2yhyhbi)(·)Y

h
h Y

ℓ
h + (∂2yℓyℓbi)(·)Y

h
ℓ Y

ℓ
ℓ

+
∑

k∈[N ]\{ℓ,h}

(∂2yhykbi)(·)Y
h
h Y

ℓ
k +

∑
j∈[N ]\{h,ℓ}

(∂2yjyℓbi)(·)Y
h
j Y

ℓ
ℓ +

∑
j∈[N ]\{h}

∑
k∈[N ]\{ℓ}

(∂2yjykbi)(·)Y
h
j Y

ℓ
k .

(3.112)



CHAPTER 3. CONTINUOUS-TIME α-POTENTIAL GAME 102

To analyze the first line in (3.112), note that by (3.108) and h ̸= ℓ,

∥(∂2yhyℓbi)(·)Y
h
h Y

ℓ
ℓ ∥H2(R) ≤

Lby
N2

∥Y h
h Y

ℓ
ℓ ∥H2(R) ≤ C∥u′h∥H4(R)∥u′′ℓ∥H4(R)

Lby
N2

,

∥(∂2yhyhbi)(·)Y
h
h Y

ℓ
h∥H2(R) ≤

Lby
N

∥Y h
h Y

ℓ
h∥H2(R) ≤ C∥u′h∥H4(R)∥u′′ℓ∥H4(R)

(Lby)
2

N2
,

∥(∂2yℓyℓbi)(·)Y
h
ℓ Y

ℓ
ℓ ∥H2(R) ≤

Lby
N

∥Y h
ℓ Y

ℓ
ℓ ∥H2(R) ≤ C∥u′h∥H4(R)∥u′′ℓ∥H4(R)

(Lby)
2

N2
.

(3.113)

Moreover, to analyze the first two terms in the second line of (3.112), by (3.108),∥∥∥∥∥∥
∑

k∈[N ]\{ℓ,h}

(∂2yhykbi)(·)Y
h
h Y

ℓ
k

∥∥∥∥∥∥
H2(R)

+

∥∥∥∥∥∥
∑

j∈[N ]\{h,ℓ}

(∂2yjyℓbi)(·)Y
h
j Y

ℓ
ℓ

∥∥∥∥∥∥
H2(R)

≤
Lby
N2

∑
k∈[N ]\{ℓ,h}

∥∥Y h
h Y

ℓ
k

∥∥
H2(R) +

Lby
N2

∑
j∈[N ]\{h,ℓ}

∥∥Y h
j Y

ℓ
ℓ

∥∥
H2(R) ≤ C∥u′h∥H4(R)∥u′′ℓ∥H4(R)

Lby
N2

.

(3.114)

Furthermore, to analyze the last term in (3.112), as h ̸= ℓ,∑
j∈[N ]\{h}

∑
k∈[N ]\{ℓ}

(∂2yjykbi)(·)Y
h
j Y

ℓ
k

=
∑

k∈[N ]\{ℓ}

(∂2yℓykbi)(·)Y
h
ℓ Y

ℓ
k +

∑
j∈[N ]\{h,ℓ}

(
(∂2yjyjbi)(·)Y

h
j Y

ℓ
j +

∑
k∈[N ]\{ℓ,j}

(∂2yjykbi)(·)Y
h
j Y

ℓ
k

)
,

(3.115)

where the first and second terms can be estimated by∥∥∥∥∥∥
∑

k∈[N ]\{ℓ}

(∂2yℓykbi)(·)Y
h
ℓ Y

ℓ
k

∥∥∥∥∥∥
H2(R)

+

∥∥∥∥∥∥
∑

j∈[N ]\{h,ℓ}

(∂2yjyjbi)(·)Y
h
j Y

ℓ
j

∥∥∥∥∥∥
H2(R)

≤
∑

k∈[N ]\{ℓ}

Lby
N2

∥∥Y h
ℓ Y

ℓ
k

∥∥
H2(R) +

∑
j∈[N ]\{h,ℓ}

Lby
N

∥∥Y h
j Y

ℓ
j

∥∥
H2(R)

≤ C

(
N
(Lby)

3

N4
+N

(Lby)
3

N3

)
∥u′h∥H4(R)∥u′′ℓ∥H4(R) ≤ C

(Lby)
2

N2
∥u′h∥H4(R)∥u′′ℓ∥H4(R),

(3.116)

and the last term can be estimated by∥∥∥∥∥∥
∑

j∈[N ]\{h,ℓ}

∑
k∈[N ]\{ℓ,j}

(∂2yjykbi)(·)Y
h
j Y

ℓ
k

∥∥∥∥∥∥
H2(R)

≤
∑

j∈[N ]\{h,ℓ}

∑
k∈[N ]\{ℓ,j}

Lby
N2

∥∥Y h
j Y

ℓ
k

∥∥
H2(R)

≤ N2
Lby
N2

C(Lby)
2∥u′h∥H4(R)∥u′′ℓ∥H4(R)

N2
= C

(Lby)
2

N2
∥u′h∥H4(R)∥u′′ℓ∥H4(R).

(3.117)
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Hence combining (3.112), (3.113), (3.114) and (3.115) yields

∥∥∥ N∑
j,k=1

(∂2yjykbi)(·, X·,i,X·)Y
h
j Y

ℓ
k

∥∥∥
H2(R)

≤ C∥u′h∥H4(R) · ∥u′′ℓ∥H4(R)
Lby
N2

.

This along with (3.110) and (3.111) yield the desired estimate.

Proof of Proposition 3.7.5. To simplify the notation, we write X = Xu , Yh = Yu ,u′h , Yℓ =
Yu ,u′′ℓ , Zh,ℓ = Zu ,u′h,u

′′
ℓ and fh,ℓ = fu ,u

′
h,u

′′
ℓ . Applying Lemma 3.8.2 with S = Zℓ,h, Bi(t) =

∂xbi(t,Xt,i,Xt), B̄i,j(t) = ∂yjbi(t,Xt,i,Xt) and ft,i = fh,ℓt,i yields that for all i ∈ [N ],

sup
t∈[0,T ]

E[|Zh,ℓ
t,i |2] ≤ 2T

∥∥∥fh,ℓi ∥∥∥2H2(R)
+

∥∥∥∥∥
N∑
k=1

|fh,ℓk |

∥∥∥∥∥
2

H2(R)

(Lby)
2

N2
T 2e2(L

b+Lb
y)T

 e2L
bT . (3.118)

By Lemma 3.8.3, one can get |fh,ℓi ∥H2(R) ≤ C∥u′h∥H4(R)∥u′′ℓ∥H4(R)L
b
y

(
(δh,i + δℓ,i)

1
N
+ 1

N2

)
,

where C ≥ 0 is a constant, which depends on the upper bounds of T , Lb, Lby. Moreover,∥∥∥∥∥
N∑
k=1

|fh,ℓk |

∥∥∥∥∥
H2(R)

≤
N∑
k=1

∥∥∥fh,ℓk ∥∥∥H2(R)
=
∑

k∈{h,ℓ}

∥∥∥fh,ℓk ∥∥∥H2(R)
+

∑
k∈[N ]\{h,ℓ}

∥∥∥fh,ℓk ∥∥∥H2(R)

≤ C

(
1

N
+ (N − 2)

1

N2

)
∥u′h∥H4(R)∥u′′ℓ∥H4(R)L

b
y ≤

C∥u′h∥H4(R)∥u′′ℓ∥H4(R)L
b
y

N
.

Summarizing the above estimates yields the desired conclusion.

3.8.2 Proofs of Propositions 3.7.7, 3.7.8 and 3.7.9

Proof of Proposition 3.7.7. To simplify the notation, we write X = Xϕ and Yh = Yϕ,ϕ′h .
Applying Lemma 3.8.2 with S = Yh, Bi(t) = (∂x(bi + ϕi))(t,Xt,i,Xt), B̄i,j(t) = (∂yj(bi +
ϕi))(t,Xt,i,Xt) and ft,i = δh,iϕ

′
h(t,Xt,i,Xt) yields that for all i ∈ IN ,

sup
t∈[0,T ]

E[|Y h
t,i|p] ≤ (2T )p−1

∥fi∥pHp(R) +

∥∥∥∥∥
N∑
k=1

|fk|

∥∥∥∥∥
p

Hp(R)

(Lb+ϕy )p

Np
T pep(L

b+ϕ+Lb+ϕ
y )T

 epL
b+ϕT .

(3.119)

where we used ∥B̄i,j∥L∞ ≤ Lb+ϕ/N . Note that using the Cauchy-Schwarz inequality, Fubini’s
theorem, and the definition of ft,i,

∥fi∥pHp(R) ≤ T sup
t∈[0,T ]

E [|ft,i|p] ≤ δh,i(2T )
p−1

(
(Lϕ

′
h)pE[(1 + |Xt,i|)p] +

(
L
ϕ′h
y

N

)p( N∑
k=1

|Xt,k|

)p)
.
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Since (
∑N

k=1 ak)
p ≤ Np−1

∑N
k=1 a

p
k for all (ak)

N
k=1 ∈ [0,∞), by Proposition 3.7.6,

∥fi∥pHp(R) ≤ δh,i(2T )
p−1

(
2p−1(Lϕ

′
h)pE[1 + |Xt,i|p] +

(
L
ϕ′h
y

N

)p( N∑
k=1

|Xt,k|

)p)

≤ δh,i(2T )
p−1

(
2p−1(Lϕ

′
h)p(1 + Ch,p

X ) +
(
L
ϕ′h
y

)p 1

N

N∑
k=1

Ck,p
X

)
.

(3.120)

Similarly, using the definition of ft,k,∥∥∥∥∥
N∑
k=1

|fk|

∥∥∥∥∥
p

Hp(R)

≤ ∥fh∥pHp(R) ≤ (2T )p−1

(
2p−1(Lϕ

′
h)p(1 + Ch,p

X ) +
(
L
ϕ′h
y

)p 1

N

N∑
k=1

Ck,p
X

)
.

(3.121)

Combining (3.119), (3.120) and (3.121) yields the desired estimate.

To prove Proposition 3.7.8, we estimate the process fϕ,ϕ
′
h,ϕ

′′
ℓ defined in (3.39) .

Lemma 3.8.4. Suppose Assumption 3.3.2 holds and that ξi ∈ L4(Ω;R) for all i ∈ IN . For
all ϕ ∈ ΠN , h, ℓ ∈ IN with h ̸= ℓ and ϕ′

h, ϕ
′′
ℓ ∈ Π, the process fϕ,ϕ

′
h,ϕ

′′
ℓ defined in (3.39) satisfies

for all i ∈ IN ,

∥fϕ,ϕ
′
h,ϕ

′′
ℓ

i ∥H2(R) ≤ C

(
(δh,i + δℓ,i)

1

N
+

1

N2

)
max{Lb+ϕy , L

ϕ′h
y , L

ϕ′′ℓ
y },

where C ≥ 0 is a constant depending only on the upper bounds of T , maxi∈IN E[|ξi|4],
maxi∈IN ∥σi∥L4, Lb+ϕ, Lϕ

′
h, Lϕ

′′
ℓ , Lb+ϕy , L

ϕ′h
y and L

ϕ′′ℓ
y .

Proof. To simplify the notation, we write X = Xϕ, Yh = Yϕ,ϕ′h and Yℓ = Yϕ,ϕ′′ℓ . Observe
that by Proposition 3.7.7, for all i, j ∈ IN ,∥∥Y h

i Y
ℓ
j

∥∥2
H2(R) ≤ T sup

t∈[0,T ]
E[|Y h

t,iY
ℓ
t,j|2] ≤ T sup

t∈[0,T ]
E[|Y h

t,i|4]
1
2E[|Y ℓ

t,j|4]
1
2

≤ T

(
δh,iC

h,4
Y +

1

N4
C̄h,4
Y

) 1
2
(
δℓ,jC

ℓ,4
Y +

1

N4
C̄ℓ,4
Y

) 1
2

(3.122)

≤ T

(
δh,iδℓ,j(C

h,4
Y Cℓ,4

Y )
1
2 +

1

N2

(
δh,i(C

h,4
Y C̄ℓ,4

Y )
1
2 + δℓ,j(C

ℓ,4
Y C̄h,4

Y )
1
2

)
+

1

N4
(C̄h,4

Y C̄ℓ,4
Y )

1
2

)
.

In the sequel, we denote by C ≥ 0 a generic constant, which depends on the upper bounds

of T , maxi∈IN (E[|ξi|4]+∥σi∥L4), Lb+ϕ, Lb+ϕy , Lϕ
′
h , L

ϕ′h
y , Lϕ

′′
ℓ and L

ϕ′′ℓ
y , and may take a different

value at each occurrence.
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We now bound each term in (3.39). Observe that for all t ∈ [0, T ],(
Y h
t,i

Yh
t

)⊤(
∂2xx(bi + ϕi) ∂2xy(bi + ϕi)
∂2yx(bi + ϕi) ∂2yy(bi + ϕi)

)
(t,Xt,i,Xt)

(
Y ℓ
t,i

Yℓ
t

)
= (∂2xx(bi + ϕi))(t,Xt,i,Xt)Y

h
t,iY

ℓ
t,i

+
N∑
j=1

(∂2xyj(bi + ϕi))(t,Xt,i,Xt)(Y
h
t,iY

ℓ
t,j + Y ℓ

t,iY
h
t,j) +

N∑
j,k=1

(∂2yjyk(bi + ϕi))(t,Xt,i,Xt)Y
h
t,jY

ℓ
t,k.

(3.123)

The upper bound of (3.123) can be obtained by similar arguments as for (3.109), with (3.108)
replaced by (3.122), bi replaced by bi + ϕi, and Proposition 3.7.4 replaced by Proposition
3.7.7. Hence it holds that∥∥∥∥∥
(
Y h
i

Yh

)⊤(
∂2xx(bi + ϕi) ∂2xy(bi + ϕi)
∂2yx(bi + ϕi) ∂2yy(bi + ϕi)

)
(·, Xi,X)

(
Y ℓ
i

Yℓ

)∥∥∥∥∥
2

H2(R)

≤ C(Lb+ϕy )2
(
δh,i + δℓ,i
N2

+
1

N4

)
.

(3.124)

Moreover, as
∑N

j=1(∂yjϕ
′
h)(·, Xi,X)Y ℓ

j = (∂yℓϕ
′
h)(·, Xi,X)Y ℓ

ℓ +
∑

j ̸=ℓ(∂yjϕ
′
h)(·, Xi,X)Y ℓ

j ,

using the upper bounds of ∂xϕ
′
h and ∂yjϕ

′
h, the identity δh,i∥Y ℓ

i ∥2H2(R) = δh,i∥Y ℓ
h∥2H2(R) and

Proposition 3.7.7,

δh,i

∥∥∥∥∥(∂xϕ′
h)(·, Xi,X)Y ℓ

i +
N∑
j=1

(∂yjϕ
′
h)(·, Xi,X)Y ℓ

j

∥∥∥∥∥
2

H2(R)

≤ δh,i3

(
(Lϕ

′
h)2∥Y ℓ

i ∥2H2(R) +
(L

ϕ′h
y )2

N2
∥Y ℓ

ℓ ∥2H2(R) +

∥∥∥∥∑
j ̸=ℓ

(∂yjϕ
′
h)(·, Xi,X)Y ℓ

j

∥∥∥∥2
H2(R)

)

≤ δh,i3

(
(Lϕ

′
h)2∥Y ℓ

h∥2H2(R) +
(L

ϕ′h
y )2

N2
∥Y ℓ

ℓ ∥2H2(R) + (N − 1)
(L

ϕ′h
y )2

N2

∑
j ̸=ℓ

∥Y ℓ
j ∥2H2(R)

)

≤ δh,i3T

(
(Lϕ

′
h)2

1

N2
C̄ℓ,2
Y +

(L
ϕ′h
y )2

N2

(
Cℓ,2
Y +

1

N2
C̄ℓ,2
Y

)
+ (N − 1)

(L
ϕ′h
y )2

N2

∑
j ̸=ℓ

1

N2
C̄ℓ,2
Y

)

≤ δh,i
3T

N2

(
(Lϕ

′
h)2C̄ℓ,2

Y + (L
ϕ′h
y )2(Cℓ,2

Y + C̄ℓ,2
Y )
)
,

where the last inequality used (1 + (N − 1)2)/N2 ≤ 1 for all N ≥ 1. Hence

δh,i

∥∥∥∥∥(∂xϕ′
h)(·, Xi,X)Y ℓ

i +
N∑
j=1

(∂yjϕ
′
h)(·, Xi,X)Y ℓ

j

∥∥∥∥∥
2

H2(R)

≤ δh,i
C

N2

(
(Lϕ

′
h)2(Lb+ϕy )2 + (L

ϕ′h
y )2

)
,

(3.125)
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Similarly,

δℓ,i

∥∥∥∥∥(∂xϕ′′
ℓ )(·, Xi,X)Y h

i +
N∑
j=1

(∂yjϕ
′′
ℓ )(·, Xi,X)Y h

j

∥∥∥∥∥
2

H2(R)

≤ δℓ,i
C

N2

(
(Lϕ

′′
ℓ )2(Lb+ϕy )2 + (L

ϕ′′ℓ
y )2

)
.

(3.126)

Combining (3.124), (3.125), (3.126) yields the desired estimate.

Proof of Proposition 3.7.8. To simplify the notation, we write X = Xϕ, Yh = Yϕ,ϕ′h , Yℓ =
Yϕ,ϕ′′ℓ , Zh,ℓ = Zϕ,ϕ

′
h,ϕ

′′
ℓ and fh,ℓ = fϕ,ϕ

′
h,ϕ

′′
ℓ . Applying Lemma 3.8.2 with S = Zℓ,h, Bt,i =

(∂x(bi + ϕi))(t,Xt,i,Xt), B̄i,j = (∂yj(bi + ϕi))(t,Xt,i,Xt) and ft,i = fh,ℓt,i yields that for all
i ∈ IN ,

sup
t∈[0,T ]

E[|Zh,ℓ
t,i |2] ≤ 2T

∥∥∥fh,ℓi ∥∥∥2H2(R)
+

∥∥∥∥∥
N∑
k=1

|fh,ℓk |

∥∥∥∥∥
2

H2(R)

(Lb+ϕy )2

N2
T 2e2(L

b+ϕ+Lb+ϕ
y )T

 e2L
b+ϕT .

(3.127)

By Lemma 3.8.4, there exists a constant C ≥ 0, depending on the upper bounds of T ,

maxi∈IN E[|ξi|4], maxi∈IN ∥σi∥L4 , Lb+ϕ, Lϕ
′
h , Lϕ

′′
ℓ , Lb+ϕy , L

ϕ′h
y and L

ϕ′′ℓ
y , such that for all i ∈ IN ,

∥fh,ℓi ∥H2(R) ≤ C
(
(δh,i + δℓ,i)

1
N
+ 1

N2

)
max{Lb+ϕy , L

ϕ′h
y , L

ϕ′′ℓ
y }, which along with h ̸= ℓ implies

that∥∥∥∥∥
N∑
k=1

|fh,ℓk |

∥∥∥∥∥
H2(R)

≤
N∑
k=1

∥∥∥fh,ℓk ∥∥∥H2(R)
=
∑

k∈{h,ℓ}

∥∥∥fh,ℓk ∥∥∥H2(R)
+

∑
k∈IN\{h,ℓ}

∥∥∥fh,ℓk ∥∥∥H2(R)

≤ Cmax{Lb+ϕy , L
ϕ′h
y , L

ϕ′′ℓ
y }
(

1

N
+ (N − 2)

1

N2

)
≤ C

N
max{Lb+ϕy , L

ϕ′h
y , L

ϕ′′ℓ
y }.

Summarizing the above estimates yields the desired conclusion.

Proof of Proposition 3.7.9 . To simplify the notation, we write X = Xϕ, Yh = Yϕ,ϕ′h , Yℓ =
Yϕ,ϕ′′ℓ and Zh,ℓ = Zϕ,ϕ

′
h,ϕ

′′
ℓ . We denote by C ≥ 0 a generic constant depending only on the

upper bounds of T , maxi∈IN E[|ξi|4], maxi∈IN ∥σi∥L4 , Lb+ϕ, Lϕ
′
h , Lϕ

′′
ℓ , Lby, L

ϕ
y , L

ϕ′h
y and L

ϕ′′ℓ
y

and may take a different value at each occurrence.
Fix t ∈ [0, T ]. By Lemma 3.8.1 and Proposition 3.7.6,

E[|uϕt,i|2]
1
2 ≤ C

(
Lϕ(1 + E[|Xϕ

t,i|2]
1
2 ) +

Lϕy
N

N∑
j=1

E[|Xϕ
t,j|2]

1
2

)
≤ C.
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Moreover, by (3.40) and Lemma 3.8.1,

E[|vϕ,ϕ
′
h

t,i |2] ≤ 3

(
E[|(∂xϕi)(t,Xt,i,Xt)Y

h
t,i|2] + E

∣∣∣∣∣
N∑
k=1

(∂ykϕi)(t,Xt,i,Xt)Y
h
t,k

∣∣∣∣∣
2


+ δh,iE[|ϕ′
h(t,Xt,i,Xt)|2]

)
≤ 3

{
(Lϕ)2E[|Y h

t,i|2] + 2
(Lϕy)

2

N2

(
E[|Y h

t,h|2] + (N − 1)
∑
k ̸=h

E
[∣∣Y h

t,k

∣∣2])

+ δh,iE
[∣∣∣∣Lϕ′h(1 + |Xt,i|) +

L
ϕ′h
y

N

N∑
k=1

|Xt,k|
∣∣∣∣2]
}
, (3.128)

which along with Propositions 3.7.6 and 3.7.7 shows that E[|vϕ,ϕ
′
h

t,i |2] ≤ C
(
δh,i +

1
N2 (L

ϕ
y)

2
)
.

This proves the desired estimate of v
ϕ,ϕ′h
t,i .

We then estimate w
ϕ,ϕ′h,ϕ

′′
ℓ

i . Similar to (3.124),∥∥∥∥∥
(
Y h
i

Yh

)⊤(
∂2xxϕi ∂2xyϕi
∂2yxϕi ∂2yyϕi

)
(·, Xi,X)

(
Y ℓ
i

Yℓ

)∥∥∥∥∥
H2(R)

≤ C

(
(δh,i + δℓ,i)

1

N
+

1

N2

)
max{Lb+ϕy , Lϕy}.

(3.129)

By Proposition 3.7.8,

∥(∂xϕi)(·, Xi,X)Zh,ℓ
i ∥H2(R) +

∥∥∥∥∥
N∑
k=1

(∂ykϕi)(·, Xi,X)Zh,ℓ
k

∥∥∥∥∥
H2(R)

≤ (Lϕ)2∥Zh,ℓ
i ∥H2(R) +

∑
k∈{h,ℓ}

∥∥∥(∂ykϕi)(·, Xi,X)Zh,ℓ
k

∥∥∥
H2(R)

+
∑

k∈IN\{h,ℓ}

∥∥∥(∂ykϕi)(·, Xi,X)Zh,ℓ
k

∥∥∥
H2(R)

≤ Cmax{Lb+ϕy , L
ϕ′h
y , L

ϕ′′ℓ
y }

(
(δh,i + δℓ,i)

1

N
+

1

N2
+
Lϕy
N

1

N
+ (N − 2)

Lϕy
N

1

N2

)

≤ C

(
(δh,i + δℓ,i)

1

N
+

1

N2

)
max{Lb+ϕy , L

ϕ′h
y , L

ϕ′′ℓ
y }.

(3.130)
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Moreover, by similar arguments as that for (3.128) and using h ̸= ℓ,

δh,i

∥∥∥∥∥(∂xϕ′
h)(·, X

ϕ
i ,X

ϕ)Y
ϕ,ϕ′′ℓ
i +

N∑
k=1

(∂ykϕ
′
h)(·, X

ϕ
i ,X

ϕ)Y
ϕ,ϕ′′ℓ
k

∥∥∥∥∥
2

H2(R)

+ δℓ,i

∥∥∥∥∥(∂xϕ′′
ℓ )(·, X

ϕ
i ,X

ϕ)Y
ϕ,ϕ′h
i

+
N∑
k=1

(∂ykϕ
′′
ℓ )(·, X

ϕ
i ,X

ϕ)Y
ϕ,ϕ′h
k

∥∥∥∥∥
2

H2(R)

≤ (δh,i + δℓ,i)
C

N2
max{Lb+ϕy , Lϕy , L

ϕ′h
y }2.

(3.131)

Summarizing (3.129), (3.130) and (3.131) and using Lb+ϕy ≤ Lby+L
ϕ
y yield the desired estimate

of w
ϕ,ϕ′h,ϕ

′′
ℓ

i .
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Chapter 4

Policy Gradient and Policy
Optimization methods

4.1 Introduction

Reinforcement Learning (RL) is a powerful framework for solving sequential decision-making
problems, where a learning agent interacts with an unknown environment to improve her
performance through trial and error [137]. In RL, an agent takes an action and receives
a reinforcement signal in terms of a reward, which encodes the outcome of her action. In
order to maximize the accumulated reward over time, the agent learns to select her actions
based on her past experiences (exploitation) and/or by making new choices (exploration).
Exploration and exploitation are the essence of RL, and entropy regularization has shown to
be effective to balance the exploration-exploitation in RL, and more importantly to enable
fast convergence [40, 75, 110].

Fast convergence and sample efficiency are critical for many applied RL problems, such
as financial trading [77] and healthcare treatment recommendations [158], where acquiring
new samples is costly or the chance of exploring new actions in the system is limited. In
such cases, the cost of making incorrect decisions can be prohibitively high.

Our work. This paper proposes and analyzes two new policy learning methods: regular-
ized policy gradient (RPG) and iterative policy optimization (IPO), for a class of discounted
entropy-regularized linear-quadratic control (LQC) problems over an infinite time horizon.
Assuming access to the exact policy evaluation, both approaches are shown to converge lin-
early in finding optimal policies of the regularized LQC (Theorem 4.4.1 and 4.5.1). Moreover,
the IPO method can achieve a super-linear convergence rate (on the order of one and a half)
once it enters a local region around the optimal policy. Finally, when the optimal policy from
an RL problem with a known environment is appropriately transferred as the initial policy

1This chapter is mainly based on work [72] entitled Fast Policy Learning for Linear Quadratic Control
with Entropy Regularization, coauthored with Xin Guo (UC Berkeley) and Renyuan Xu (NYU)
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to an RL problem with an unknown environment, the IPO algorithm is shown to enable a
super-linear convergence rate if the two environments are sufficiently close (Theorem 4.6.1).

Our analysis approach is inspired by [53] to establish the gradient dominance condition
within the linear-quadratic structure. Unlike theirs, our framework incorporates entropy
regularization and state transition noise (Section 4.2). Therefore, in contrast to their deter-
ministic and linear policies, our policies are of Gaussian type. Consequently, the gradient
dominance condition involves both the gradient of the mean and the gradient of the covari-
ance (Lemma 4.3.2). Accordingly, to establish the convergence of the covariance update in
RPG, the smoothness of the objective function for bounded covariance is exploited, which
is ensured with proper learning rate (Lemma 4.4.1).

Different from the first-order gradient descent update in most existing literature, our
proposed IPO method requires solving an optimization problem at each step. This yields
faster (super-linear) local convergence, established by bounding the differences between two
discounted state correlation matrices with respect to the change in policy parameters (Lemma
4.5.2 and Theorem 4.5.2). This approach is connected intriguingly with [40], where the bound
for the difference between discounted state visitation measures yielded the local quadratic
convergence in Markov Decision Processes (MDPs).

Related works of policy gradient methods in LQC. As a cornerstone in optimal
control theory, the LQC problem is to find an optimal control in a linear dynamical system
with a quadratic cost. LQC is popular due to its analytical tractability and its approximation
power to nonlinear problems [13]. Until recently, most works on the LQC problem assumed
that the model parameters are fully known. The first global convergence result for the
policy gradient method to learn the optimal policy for LQC problems was developed in [53]
for an infinite time horizon and with deterministic dynamics. Their work was extended in
[19] to give global optimality guarantees of policy gradient methods for a larger class of
control problems, which satisfy a closure condition under policy improvement and convexity
of policy improvement steps. More progress has been made for policy gradient methods in
other settings as well, including [21] for a real-valued matrix function, [22] for a continuous-
time setting, [61] for multiplicative noise, [91], [107] for additive noise, and [76] for finite time
horizon with an additive noise, [144] and [166] for time-average costs with risk constraints,
[80] for nearly-linear dynamic system, [150] for distributional LQC to find the distribution
of the return, and [78] for nonlinear stochastic control with exit time. Our work establishes
fast convergence for both policy gradient based and policy optimization based algorithms
for an infinite time horizon LQC with entropy regularization.

Related works of entropy regularization. Entropy regularization has been frequently
adopted to encourage exploration and improve convergence [71, 81, 89, 90, 118, 128, 148,
149, 152, 142, 140, 139, 161]. In particular, [2] showed that entropy regularization induces
a smoother landscape that allows for the use of larger learning rates, and hence, faster con-
vergence. Convergence rate analysis has been established when the underlying dynamic is
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an MDP with finite states and finite actions. For instance, [1] and [110] developed conver-
gence guarantees for regularized policy gradient methods, with relative entropy regularization
considered in [1] and entropy regularization in [110]. Both papers suggest the role of regu-
larization in guaranteeing faster convergence for the tabular setting. For the natural policy
gradient method, [40] established a global linear convergence rate and a local quadratic
convergence rate.

For system with infinite number of states and actions, the closest to our work in terms
of model setup is [149]. Our work replaces their aggregated control setup with controls
that are randomly sampled from the policy, which are more realistic in handling real-world
systems. The focuses of these two papers are also different: theirs explained the exploita-
tion–exploration trade-off with entropy regularization from a continuous-time stochastic con-
trol perspective and provided theoretical support for Gaussian exploration for LQC; while
ours is on algorithms design and the convergence analysis. To the best of our knowledge, our
work is the first non-asymptotic convergence result for LQC under entropy regularization.

Related works of transfer learning. Transfer learning, a.k.a. knowledge transfer, is a
technique to utilize external expertise from other domains to benefit the learning process of a
new task [28, 29, 116, 151]. It has gained popularity in many areas to improve the efficiency
of learning. However, transfer learning in the RL framework is decisively more complicated
and remains largely unexplored, as the knowledge to transfer involves a controlled stochastic
process [168]. The transfer learning scheme proposed here is the first known theoretical
development of transfer learning in the context of RL.

Notations and organization. Throughout the paper, we will denote, for any matrix
Z ∈ Rm×d, Z⊤ for the transpose of Z, ∥Z∥ for the spectral norm of Z, ∥Z∥F for the
Frobenius norm of Z, tr(Z) for the trace of a square matrix Z, and σmin(Z) (resp. σmax(Z))
for the minimum (resp. maximum) singular value of a square matrix Z. Let Sd+ denote
the set of symmetric positive semi-definite matrices in Rd×d and Sd++ for the subset of Sd+
consisting of symmetric positive definite matrices. We will adopt N (µ,Σ) for a Gaussian
distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Sd+.

The rest of the paper is organized as follows. Section 4.2 introduces the problem and pro-
vides its theoretical solution using the dynamic programming principle. Section 4.3 presents
the gradient dominance condition and related smoothness property. Section 4.4 introduces
the RPG method and provides the global linear convergence result, and Section 4.5 proposes
the IPO method, along with its global linear convergence and local super-linear convergence
results. Section 4.6 shows that IPO leads to an efficient transfer learning scheme. A model-
free version of the policy-based method is discussed in Section 4.7. Numerical examples are
presented in Section 4.8.
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4.2 Regularized LQC Problem and Solution

4.2.1 Problem Formulation

We consider an entropy-regularized LQC problem over an infinite time horizon with a con-
stant discounted rate.

Randomized policy and entropy regularization. To enable entropy regularization for
exploration in the context of learning, we focus on randomized Markovian policies that are
stationary. Namely, define the admissible policy set as Π := {π : X → P(A)}, with X the
state space, A the action space, and P(A) the space of probability measures on action space
A. Here each admissible policy π ∈ Π maps a state x ∈ X to a randomized action in A.

For a given admissible policy π ∈ Π, the corresponding Shannon’s entropy is defined as
[69, 90]:

H(π(· | x)) := −
∫
A
log π(u | x)π(u | x)du.

The Shannon entropy quantifies the information gain from exploring the unknown envi-
ronment. We incorporate this entropy term in the objective function as a regularization to
encourage collecting information in the unknown environment and performing exploration.

Objective function and dynamics. The decision maker aims to find an optimal policy
by minimizing the following objective function

min
π∈Π

Ex∼D[Jπ(x)], (4.1)

with value function Jπ given by

Jπ(x) := Eπ

[
∞∑
t=0

γt
(
x⊤t Qxt + u⊤t Rut + τ log π(ut|xt)

)∣∣∣∣∣x0 = x

]
, (4.2)

and such that for t = 0, 1, 2, · · · ,

xt+1 = Axt +But + wt, x0 ∼ D. (4.3)

Here xt ∈ X := Rn is the state of the system and the initial state x0 follows an initial
distribution D. Here ut ∈ A := Rk is the control at time t following a policy π. In addition,
{wt}∞t=0 are zero-mean independent and identically distributed (i.i.d) noises. We assume
that {wt}∞t=0 have finite second moments. That is, tr(W ) < ∞ with W := E[wtw⊤

t ] for any
t = 0, 1, 2, · · · . The matrices A ∈ Rn×n, B ∈ Rn×k define the system’s (transition) dynamics.
Q ∈ Sn+ and R ∈ Sk++ are matrices that parameterize the quadratic costs. γ ∈ (0, 1) denotes
the discount factor and τ > 0 denotes the regularization parameter. The expectation in
(4.1) is taken with respect to the control ut ∼ π(·|xt) and system noise wt for t ≥ 0.
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4.2.2 Optimal Value Function and Policy

While the optimal solution to the LQC problem is a well-explored topic, it is worth noting
that, to the best of our knowledge, no prior work has presented a solution to the entropy-
regularized LQC problem in the form of (4.1). Additionally, in the study of [149] for entropy-
regularized LQC with continuous-time state dynamics, they focused on the state transitions
with aggregated controls. This differs from the state transitions considered in (4.3), where
the controls in the state transitions are randomly sampled from the policy π.

Optimal value function. The optimal value function J∗ : X → R is defined as

J∗(x) = min
π∈Π

Jπ(x). (4.4)

The following theorem establishes the explicit expression for the optimal control policy and
the corresponding optimal value function: the optimal policy is characterized as a multi-
variate Gaussian distribution, with the mean linear in the state x and a constant covariance
matrix.

Theorem 4.2.1 (Optimal value functions and optimal policy). The optimal policy π∗ to
(4.4) is a Gaussian policy: π∗(·|x) = N (−K∗x,Σ∗),∀x ∈ X , where

K∗ = γ(R + γB⊤PB)−1B⊤PA, Σ∗ =
τ

2
(R + γB⊤PB)−1, (4.5)

with P and q satisfying

P = Q+K∗⊤RK∗ + γ(A−BK∗)⊤P (A−BK∗), (4.6a)

q =
1

1− γ

(
tr(Σ∗(R + γB⊤PB))− τ

2

(
k + log

(
(2π)k detΣ∗))+ γ tr(WP )

)
. (4.6b)

The optimal value function J∗ in (4.4) can be expressed as J∗(x) = x⊤Px+ q.

Proof of Theorem 4.2.1 relies on the following lemma, which establishes the optimal
solution for the one-step reward function with entropy regularization in the reward.

Lemma 4.2.1. For any given matrix M ∈ Sk+ and vector b ∈ Rk, the optimal solution
p∗ ∈ P(A) to the following optimization problem (P) is a multivariate Gaussian distribution
with covariance τ

2
M−1 and mean −1

2
M−1b:

min
p:A7→[0,∞)

Eu∼p(·)
[
u⊤Mu+ b⊤u+ τ log p(u)

]
,

subject to

∫
A
p(u)du = 1.

(P)

Proof. (of Theorem 4.2.1). By the definition of J∗ in (4.4),

J∗(x) = min
π∈Π

Eπ
{
x⊤Qx+ u⊤Ru+ τ log(π(u|x)) + γJ∗(Ax+Bu+ w)

}
, (4.7)
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where the expectation is taken with respect to u ∼ π(·|x) and the noise term w, with mean
0 and covariance W . Stipulating

J∗(x) = x⊤Px+ q (4.8)

for P ∈ Sn+ and q ∈ R and plugging into (4.7), we can obtain the optimal value function
with dynamic programming principle [16, 18, 63, 137]:

J∗(x) = x⊤Qx+min
π

Eπ
{
u⊤Ru+ τ log(π(u|x))

+ γ
[
(Ax+Bu+ w)⊤P (Ax+Bu+ w) + q

]}
= x⊤Qx+ γ Tr(WP ) + γx⊤A⊤PAx+ γq

+min
π

Eπ
{
u⊤(R + γB⊤PB)u+ τ log(π(u|x)) + 2γu⊤B⊤PAx

}
. (4.9)

Now apply Lemma 4.2.1 to (4.9) with M = R + γB⊤PB and b = 2γB⊤PAx, one can get
the optimal policy at state x:

π∗(·|x) = N
(
−γ(R + γB⊤PB)−1B⊤PAx,

τ

2
(R + γB⊤PB)−1

)
= N (−K∗x,Σ∗) , (4.10)

where K∗,Σ∗ are defined in (4.5).
To derive the associated optimal value function, we first calculate the negative entropy

of policy π∗ at any state x ∈ X :

Eπ∗ [log(π∗(u|x))] =
∫
A
log(π∗(u|x))π∗(u|x)du = −1

2

(
k + log

(
(2π)k detΣ∗)) . (4.11)

Plug (4.10) and (4.11) into (4.9) to get

J∗(x) = x⊤
(
Q+K∗⊤RK∗ + γ(A−BK∗)⊤P (A−BK∗)

)
x

+ Tr(Σ∗R)− τ

2

(
k + log

(
(2π)k detΣ∗))+ γ

(
Tr(Σ∗B⊤PB) + Tr(WP ) + q

)
.

Combining this with (4.8), we obtain the Riccati equation in (4.6a), which according to [17,
Proposition 4.4.1] has a unique solution P . This is because (4.6a) takes the same form as
the one for the classical LQR problem (without entropy regularization). With the unique
solution P , we can then define the unique q as in (4.6b), which finishes the proof.

4.3 Analysis of Value Function and Policy Gradient

In this section, we analyze the expression of the policy gradient, the gradient dominance
condition, and the smoothness property of the value function. These properties are necessary
for studying the algorithms proposed in Section 4.4 and Section 4.5.
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Throughout the analysis, we assume that there exists ρ ∈ (0, 1√
γ
) satisfying ∥A−BK∗∥ ≤

ρ where K∗ is the optimal solution in Theorem 4.2.1. We consider the following do-
main Ω (i.e., the admissible control set) for (K,Σ): Ω = {K ∈ Rk×n,Σ ∈ Sk+}. For
any x0 ∈ X following the initial distribution D, we assume that Ex0∼D[x0x

⊤
0 ] exists and

µ := σmin

(
Ex0∼D[x0x

⊤
0 ]
)
> 0. For any (K,Σ) ∈ Ω, define SK,Σ as the discounted state

correlation matrix, i.e.,

SK,Σ := EπK,Σ

[
∞∑
i=0

γixix
⊤
i

]
. (4.12)

According to Theorem 4.2.1, the optimal policy of (4.1) is a Gaussian policy with a mean
following a linear function of the state and a constant covariance matrix. In the remainder
of the paper, we look for a parameterized policy of the form

πK,Σ(·|x) := N (−Kx,Σ), (4.13)

for any x ∈ X . With a slight abuse of notation, we use JK,Σ to denote JπK,Σ
and denote the

objective in (4.1) as a function of (K,Σ), given by

C(K,Σ) := Ex∼D [JK,Σ(x)] . (4.14)

To analyze the dependence of Σ in the objective function (4.14) for any fixed K, we also
define fK : Rk×k → R as

fK(Σ) =
τ

2(1− γ)
log det(Σ)− 1

1− γ
Tr
(
Σ(R + γB⊤PKB)

)
, ∀Σ ≻ 0. (4.15)

By applying the Bellman equation, we can get JK,Σ(x) = x⊤PKx + qK,Σ with matrix
PK ∈ Sn+ and qK,Σ ∈ R satisfying

PK = Q+K⊤RK + γ(A−BK)⊤PK(A−BK),

qK,Σ =
1

1− γ

(
tr(Σ(R + γB⊤PKB)− τ

2

(
k + log

(
(2π)k detΣ

))
+ γ tr(WPK)

)
.

(4.16)

Note that (4.16) differs from equations (4.6a) in terms of their solutions. In (4.6a), the
values of K∗ and Σ∗ are explicitly defined by K∗ = γ(R + γB⊤PB)−1B⊤PA and Σ∗ =
τ
2
(R+ γB⊤PB)−1. By substituting these values into (4.6a), one can obtain the solutions for
P and q, which define the optimal value function J∗(x) = x⊤Px+ q.

Meanwhile, K and Σ in (4.16) can take any admissible policy parameter values in Ω,
and the resulting PK and qK,Σ are functions of these policy parameters. The value function
JK,Σ(x) derived from (4.16) represents the value starting from state x with policy parameters
(K,Σ), which may or may not correspond to an optimal policy.

We now provide an explicit form for the gradient of the cost function C(K,Σ) with respect
to K and Σ. This explicit form will be used to show the gradient dominance condition in
Lemma 4.3.2 and also in analyzing the algorithms in Sections 4.4 and 4.5.
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Lemma 4.3.1 (Explicit form for the policy gradient). Take a policy in the form of (4.13)
with parameter (K,Σ) ∈ Ω, then the policy gradient has an explicit form:

∇KC(K,Σ) = 2EKSK,Σ, ∇ΣC(K,Σ) =
1

1− γ

(
R− τ

2
Σ−1 + γB⊤PKB

)
, (4.17)

where EK := −γB⊤PK(A−BK) +RK and SK,Σ is defined in (4.12).

Gradient dominance. To prove the global convergence of policy gradient methods, the
key idea is to show the gradient dominance condition, which states that C(K,Σ)−C(K∗,Σ∗)
can be bounded by ∥∇KC(K,Σ)∥2F and ∥∇ΣC(K,Σ)∥2F for any (K,Σ) ∈ Ω. This suggests
that when the gradient norms are sufficiently small, the cost function of the given policy is
sufficiently close to the optimal cost function.

Lemma 4.3.2 (Gradient dominance of C(K,Σ)). Let π∗ be the optimal policy with param-
eters K∗,Σ∗. Suppose policy π with parameter (K,Σ) ∈ Ω satisfying Σ ⪯ I has a finite
expected cost, i.e., C(K,Σ) <∞. Then

C(K,Σ)− C(K∗,Σ∗) ≤ ∥SK∗,Σ∗∥
4µ2σmin(R)

∥∇KC(K,Σ)∥2F +
1− γ

σmin(R)
∥∇ΣC(K,Σ)∥2F . (4.18)

For a lower bound, with EK defined in Lemma 4.3.1,

C(K,Σ)− C(K∗,Σ∗) ≥ µ

∥R + γB⊤PKB∥
Tr(E⊤

KEK).

“Almost” smoothness. Next, we will develop a smoothness property for the cost ob-
jective C(K,Σ), which is necessary for establishing the convergence algorithms proposed in
Section 4.4 and Section 4.5.

A function f : Rn → R is considered smooth if the following condition is satisfied:∣∣f(x)− f(y) +∇f(x)⊤(y − x)
∣∣ ≤ m

2
∥x− y∥2, ∀x, y ∈ Rn, with m a finite constant [53, 76]

. In general, characterizing the smoothness of C(K,Σ) is challenging, as it may become
unbounded when the eigenvalues of A − BK exceed 1√

γ
or when σmin(Σ) is close to 0.

Nevertheless, in Lemma 4.3.3, we will see that if C(K,Σ) is “almost” smooth, then the
difference C(K,Σ) − C(K ′,Σ′) can be bounded by the sum of linear and quadratic terms
involving K −K ′ and Σ− Σ′.

Lemma 4.3.3 (“Almost” smoothness of C(K,Σ)). Fix 0 < a ≤ 1 and define Ma =
τ(− log(a)+a−1)

2(1−γ)(a−1)2
. For any K,Σ and K ′,Σ′ satisfying aI ⪯ Σ ⪯ I and aI ⪯ Σ′ ⪯ I,

C(K ′,Σ′)− C(K,Σ) = Tr
(
SK′,Σ′(K ′ −K)⊤(R + γB⊤PKB)(K ′ −K)

)
+ 2Tr

(
SK′,Σ′(K ′ −K)⊤EK

)
+ fK(Σ)− fK(Σ

′)

≤ Tr
(
SK′,Σ′(K ′ −K)⊤(R + γB⊤PKB)(K ′ −K)

)
+ 2Tr

(
SK′,Σ′(K ′ −K)⊤EK

)
+

1

1− γ
tr
((
R + γB⊤PKB − τ

2
Σ−1

)
(Σ′ − Σ)

)
+Ma tr

(
(Σ−1Σ′ − I)2

)
,

where fK is defined in (4.15).
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4.4 Regularized Policy Gradient Method

In this section, we propose a new regularized policy gradient (RPG) update for the param-
eters K and Σ:

K(t+1) = K(t) − η1∇KC
(
K(t),Σ(t)

)
·
(
SK(t),Σ(t)

)−1
,

Σ(t+1) = Σ(t) − η2Σ
(t)∇ΣC

(
K(t),Σ(t)

)
Σ(t).

RPG takes into account the inherent structure of the parameter space, which can accelerate
convergence. By the explicit expressions of ∇KC(K,Σ) and ∇ΣC(K,Σ) in (4.17), the above
update is equivalent to

K(t+1) = K(t) − 2η1EK(t) ,

Σ(t+1) = Σ(t) − η2
1− γ

Σ(t)
(
R + γB⊤PK(t)B − τ

2

(
Σ(t)
)−1
)
Σ(t).

(RPG)

From (RPG), one can see that the update of parameter K does not depend on the covariance
matrix Σ. However, the update of Σ does depend on K through PK .

Remark 4.4.1 (Comparison to natural policy gradient). Assume that the covariance matrix
Σ is parameterized as scalar multiplication of an identity matrix, i.e., Σ = sI for some s > 0
and πK,s(x, u) = N (Kx, sI). Then the natural policy gradient follows the update [93]:

K ′ = K − ηG−1
K ∇C(K, sI), s′ = s− ηG−1

s ∂sC(K, sI), (4.19)

where GK and Gs are the Fischer information matrices under policy πK,s, i.e.,

GK = E

[
∞∑
t=0

∇ log πK,s(ut|xt)∇ log πK,s(ut|xt)⊤
]
,

Gs = E

[
∞∑
t=0

∂s log πK,s(ut|xt)∂s log πK,s(ut|xt)⊤
]
.

When the covariance matrix of the Gaussian policy takes a diagonal form as in πK,s, (4.19)
are equivalent to

K ′ = K − η∇C(K, sI)(SK,sI)−1, s′ = s− η̃ ∂sC(K, sI)s
2, (4.20)

for some constant η̃ > 0.
Even though (RPG) is similar to (4.20), there is no corresponding Fisher information

form associated with (RPG) because of the additional step that simultaneously updates the
covariance matrix Σ, which may not necessarily be diagonal.

We next show that (RPG) achieves a linear convergence rate. The covariance matrices{
Σ(t)
}∞
t=0

using (RPG) remain bounded, provided that the initial covariance matrix Σ(0) is
appropriately bounded.
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Theorem 4.4.1 (Global convergence of (RPG)). Given τ ∈ (0, 2σmin(R)], take (K
(0),Σ(0)) ∈

Ω such that Σ(0) ⪯ I. Define Mτ :=
τk

2(1−γ) log
(
σmin(R)
πτ

)
and

r0 := max

{
2

τσmin (Σ(0))
, ∥R∥+ γ

∥B⊤B∥
(
C(K(0),Σ(0))−Mτ

)
µ+ γ

1−γσmin(W )

}
.

Then for η1, η2 = 1
2r0
, τ(1−γ)

2r20
and for N ≥ max

{
∥SK∗,Σ∗∥r0
µσmin(R)

,
8r30

τ2σmin(R)

}
log C(K(0),Σ(0))−C(K∗,Σ∗)

ε
,

the regularized policy gradient descent (RPG) has the following performance bound:

C
(
K(N),Σ(N)

)
− C(K∗,Σ∗) ≤ ε.

Remark 4.4.2. Theorem 4.4.1 shows that in order to achieve an ϵ-optimal value function,
the number of iterations required is at least O

(
1
τ5

)
. Thus, the larger the value of regulariza-

tion τ , the smaller the number of iterations, and the faster the convergence.

Remark 4.4.3. In the RPG update, we only need an upper bound and a lower bound for
Σ, namely, aI ⪯ Σ ⪯ bI for some 0 < a < b. Different choices of b may lead to different
(admissible) ranges for τ . For ease of exposition, we set b = 1 in Theorem 4.4.1, and the
results can be easily extended to the general case of any b ≥ a > 0.

To prove Theorem 4.4.1, we will first need the boundedness of the one-step update of
the covariance Σ, in order to guarantee the well-definedness of the cost function along the
trajectory when performing (RPG) (Lemma 4.4.1). Additionally, we will bound the one-
step update of (RPG) (Lemma 4.4.2), and provide an upper bound of ∥PK∥ in terms of the
objective function C(K,Σ) (Lemma 4.4.3).

Lemma 4.4.1 (Boundedness of the update of Σ in (RPG)). Let (K,Σ) ∈ Ω be given such

that 0 ≺ Σ ⪯ I. Fix τ ∈ (0, 2σmin(R)], a ∈
(
0, min

{
τ

2∥R+γB⊤PKB∥ , σmin(Σ)
})
. Let K ′,Σ′ be

the one-step update of K,Σ using (RPG) with η2 ≤ 2(1−γ)a2
τ

. Then aI ⪯ Σ′ ⪯ I.

Lemma 4.4.2 (Contraction of (RPG)). Let (K,Σ) ∈ Ω be given such that 0 ≺ Σ ⪯ I.

Assume τ ∈ (0, 2σmin(R)]. Fix a ∈
(
0, min

{
τ

2∥R+γB⊤PKB∥ , σmin(Σ)
})

. Let K ′,Σ′ be the one-

step update of K,Σ using (RPG) with η1 ≤ 1
2∥R+γB⊤PKB∥ , η2 ≤ 2(1−γ)a2

τ
. Then aI ⪯ Σ′ ⪯ I

and
C(K ′,Σ′)− C(K∗,Σ∗) ≤ (1− ζ)(C(K,Σ)− C(K∗,Σ∗)),

with 0 < ζ = min
{

2µη1σmin(R)
∥SK∗,Σ∗∥ , η2aσmin(R)

2(1−γ)

}
< 1.

Lemma 4.4.3 (Lower bound for C(K,Σ)). LetMτ be defined in the same way as in Theorem

4.4.1. Then for all (K,Σ) ∈ Ω, C(K,Σ) ≥
(
µ+ γ

1−γσmin(W )
)
∥PK∥+Mτ .
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Proof. (of Theorem 4.4.1). Using Lemma 4.4.3 for any t ≥ 0,

1

∥R + γB⊤PK(t)B∥
≥ 1

∥R∥+ γ∥B⊤B∥ ∥PK(t)∥
≥ 1

∥R∥+ γ
∥B⊤B∥(C(K(t),Σ(t))−Mτ)

µ+ γ
1−γ

σmin(W )

. (4.21)

Let a = τ
2r0

, ζ = min
{

2µη1σmin(R)
∥SK∗,Σ∗∥ , η2aσmin(R)

2(1−γ)

}
. The proof is completed by induction to

show C(K(t+1),Σ(t+1)) ≤ (1 − ζ)C(K(t),Σ(t)) and aI ⪯ Σ(t+1) ⪯ I holds for all t ≥ 0: at
t = 0, apply (4.21) to get η1 ≤ 1

2∥R+γB⊤P
K(0)B∥ and a ≤ τ

2∥R+γB⊤P
K(0)B∥ . Additionally with

η2 =
τ(1−γ)
2r20

= 2(1−γ)a2
τ

and aI ⪯ Σ(0) ⪯ I, Lemma 4.4.2 can be applied to get C(K(1),Σ(1)) ≤
(1 − ζ)C(K(0),Σ(0)) ≤ C(K(0),Σ(0)), and aI ⪯ Σ(1) ⪯ I. The proof proceeds by arguing
that Lemma 4.4.2 can be applied at every step. If it were the case that C

(
K(t),Σ(t)

)
≤

(1− ζ)C
(
K(t−1),Σ(t−1)

)
≤ C

(
K(0),Σ(0)

)
and aI ⪯ Σ(t) ⪯ I, then

2η1 =
1

∥R∥+ γ
∥B⊤B∥(C(K(0),Σ(0))−Mτ)

µ+ γ
1−γ

σmin(W )

≤ 1

∥R∥+ γ
∥B⊤B∥(C(K(t),Σ(t))−Mτ)

µ+ γ
1−γ

σmin(W )

,

thus by (4.21) η1 ≤ 1

∥R+γB⊤P
K(t)B∥ and in the same way a ≤ τ

2∥R+γB⊤P
K(t)B∥ . Thus, Lemma

4.4.2 can be applied such that C
(
K(t+1),Σ(t+1)

)
−C(K∗,Σ∗) ≤ (1−ζ)

(
C
(
K(t),Σ(t)

)
− C(K∗,Σ∗)

)
.

and aI ⪯ Σ(t+1) ⪯ I. Thus, the induction is complete. Finally, observe that 0 < ζ ≤
2µη1σmin(R)
∥SK∗,Σ∗∥ = µσmin(R)

∥SK∗,Σ∗∥r0 < 1, and ζ ≤ η2aσmin(R)
2(1−γ) = τ2σmin(R)

8r30
, the proof is complete.

4.5 Iterative Policy Optimization Method

In this section, we propose an iterative policy optimization method (IPO), in which we
optimize a one-step deviation from the current policy in each iteration. For IPO, one can
show both the global convergence with a linear rate and a local super-linear convergence
when the initialization is close to the optimal policy. This local super-linear convergence
result benefits from the entropy regularization.

By the Bellman equation for the value function JK,Σ,

JK,Σ(x) = Eu∼πK,Σ

[
x⊤Qx+ u⊤Ru+ τ log πK,Σ(u|x) + γJK,Σ(Ax+Bu+ w)

]
.

We assume the one-step update (K ′,Σ′) satisfies:

K ′,Σ′ = argmin
K̃,Σ̃

Eu∼π
K̃,Σ̃

[
x⊤Qx+ u⊤Ru+ τ log πK̃,Σ̃(u|x) + γJK,Σ(Ax+Bu+ w)

]
.

By direct calculation, we have the following explicit forms for the updates:

K(t+1) = K(t) −
(
R + γB⊤PK(t)B

)−1
EK(t) ,

Σ(t+1) =
τ

2

(
R + γB⊤PK(t)B

)−1
,

(IPO)
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for t = 1, 2, · · · . The update of K in (IPO) is identical to the Gauss-Newton update when
the learning rate is equal to 1 in [53]. The update of Σ in (IPO) is not gradient-based and
only depends on the value of K in the previous step.

4.5.1 Global Linear Convergence

In this section, we establish the global convergence for (IPO) with a linear rate.

Theorem 4.5.1 (Global convergence of (IPO)). For

N ≥ ∥SK∗,Σ∗∥
µ

log
C(K(0),Σ(0))− C(K∗,Σ∗)

ε
,

the iterative policy optimization algorithm (IPO) has the following performance bound:

C(K(N),Σ(N))− C(K∗,Σ∗) ≤ ε.

The proof of Theorem 4.5.1 is immediate given the following lemma, which bounds the
one-step progress of (IPO):

Lemma 4.5.1 (Contraction of (IPO)). Suppose (K ′,Σ′) follows a one-step updating rule of
(IPO) from (K,Σ). Then

C(K ′,Σ′)− C(K∗,Σ∗) ≤
(
1− µ

∥SK∗,Σ∗∥

)
(C(K,Σ)− C(K∗,Σ∗)) ,

with 0 < µ
∥SK∗,Σ∗∥ ≤ 1.

Theorem 4.5.1 suggests that (IPO) achieves a global linear convergence. Compared with
(RPG), (IPO) exhibits faster convergence in terms of the rate at which the objective function
decreases (cf. Lemmas 4.4.2 and 4.5.1). Furthermore, the subsequent section demonstrates
that (IPO) enjoys a local super-linear convergence when the initial policy parameter is within
a neighborhood of the optimal policy parameter.

4.5.2 Local Super-linear Convergence

This section establishes a local super-linear convergence for (IPO). We first introduce some
constants used throughout this section:

ξγ,ρ :=
1− γρ2 + γ

(1− γρ2)2
, ζγ,ρ :=

2− ρ2

(1− ρ2)2(1− γ)
+

1

(1− ρ2)2(1− γρ2)
,

ωγ,ρ :=
1

(1− ρ2)(1− γ)
+

1

(1− ρ2)(1− γρ2)
.

(4.22)
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To simplify the exposition, we often make use of the notation SK(t),Σ(t) and SK∗,Σ∗ , which

we abbreviate as S(t) and S∗, respectively, provided that the relevant parameter values are
clear from the context. Then, define

κ :=
ρ+ ∥A∥
|σmin(B)|

, c := 2ρξγρ∥B∥(∥Q∥+ ∥R∥κ2) + 1

µ
∥S∗∥∥R∥ · (κ+ ∥K∗∥),

c1 :=
(
ξγ,ρ∥E[x0x⊤0 ]∥+ ζγ,ρ∥BΣ∗B⊤ +W∥

)
· 2ρ∥B∥

·
(
1 + σmin(R) · ∥R + γB⊤PK∗B∥+ cγσmin(R) ·

(
∥B∥∥A∥+ ∥B∥2κ

) )
,

c2 :=
cτγωγ,ρ∥B∥4

2σmin(R)2
.

(4.23)

Note that for any K ∈ Ω, ∥K∥ ≤ ∥BK∥
|σmin(B)| ≤

∥A−BK∥+∥A∥
|σmin(B)| ≤ ρ+∥A∥

|σmin(B)| = κ.

We now show that (IPO) achieves a super-linear convergence rate once the policy pa-
rameter (K,Σ) enters a neighborhood of the optimal policy parameter (K∗,Σ∗).

Theorem 4.5.2 (local super-linear convergence of (IPO)). Let c1 and c2 be defined in (4.23).

Let δ := min
{

1
c1+c2

σmin(S
∗), ρ−∥A−BK∗∥

∥B∥

}
. Suppose that the initial policy (K(0),Σ(0)) satisfies

C(K(0),Σ(0))− C(K∗,Σ∗) ≤
(
1

µ
− 1

∥S∗∥

)−1

σmin (R + γBPK∗B) δ2, (4.24)

then the iterative policy optimization algorithm (IPO) has the following convergence rate:
for t = 0, 1, 2, · · · ,

C(K(t+1),Σ(t+1))− C(K∗,Σ∗) ≤
(c1 + c2)

(
C(K(t),Σ(t))− C(K∗,Σ∗)

)1.5
σmin(S∗)

√
µσmin(R + γB⊤PK∗B)

.

The following Lemma 4.5.2 is critical for establishing this local super-linear convergence:
it shows that there is a contraction if the differences between two discounted state correlation
matrices ∥S(t+1)−S∗∥ is small enough. Then, by the perturbation analysis for SK,Σ (Lemma
4.5.3), one can bound ∥S(t+1) − S∗∥ by ∥K(t) −K∗∥ (Lemma 4.5.4). The proof of Theorem
4.5.2 follows by ensuring the admissibility of model parameters

{
K(t),Σ(t)

}∞
t=0

along all the
updates.

Lemma 4.5.2. Suppose that ∥S(t+1) − S∗∥ ≤ σmin(S
∗) for all t ≥ 0 when updating with

(IPO), then

C(K(t+1),Σ(t+1))− C(K∗,Σ∗) ≤ ∥S(t+1) − S∗∥
σmin(S∗)

(
C(K(t),Σ(t))− C(K∗,Σ∗)

)
.

Lemma 4.5.3 (SK,Σ perturbation). For any (K1,Σ1) and (K2,Σ2) satisfying ∥A−BK1∥ ≤ ρ
and ∥A−BK2∥ ≤ ρ,

∥SK1,Σ1 − SK2,Σ2∥
≤
(
ξγ,ρ∥E[x0x⊤0 ]∥+ ζγ,ρ∥BΣ1B

⊤ +W∥
)
· 2ρ∥B∥ ∥K1 −K2∥+ ωγ,ρ∥B∥2∥Σ1 − Σ2∥.
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Lemma 4.5.4 (Bound of one-step update of S(t)). Assume that the update of parameter
(K,Σ) follows (IPO). Let c1, c2 be defined in (4.23). Then for K(t+1) satisfying ∥A −
BK(t+1)∥ ≤ ρ, we have ∥S(t+1) − S∗∥ ≤ (c1 + c2)∥K(t) −K∗∥.

Proof. (of Theorem 4.5.2). First, Theorem 4.2.1 shows that for an optimal K∗, K∗ =
γ(R + γB⊤PK∗B)−1B⊤PK∗A. Then, by the definition of EK in Lemma 4.3.1,

EK∗ = −γB⊤PK∗A+ (γB⊤PK∗B +R)K∗ = 0.

Fix integer t ≥ 0. Observe that(
1− µ

∥SK∗,Σ∗∥

)(
C(K(t),Σ(t))− C(K∗,Σ∗)

) (a)

≥ C(K(t+1),Σ(t+1))− C(K∗,Σ∗)

(b)

≥ µσmin (R + γBPK∗B) ∥K(t+1) −K∗∥2 + fK∗(Σ∗)− fK∗(Σ(t+1))

(c)

≥ µσmin (R + γBPK∗B) ∥K(t+1) −K∗∥2.

(4.25)

(a) is from the contraction property in Lemma 4.5.1; (b) follows from Lemma 4.3.3 and
(4.59); to obtain (c), note that fK∗ (Σ∗) − fK∗

(
Σ(t+1)

)
≥ 0, since Σ∗ is the maximizer of

fK∗ . Thus, (4.25) and (4.24) imply ∥K(t+1)−K∗∥ ≤ δ which suggests that ∥A−BK(t+1)∥ ≤
∥A−BK∗∥+ ∥B∥∥K(t+1) −K∗∥ ≤ ρ. Then by Lemma 4.5.4,

∥S(t+1) − S∗∥ ≤ (c1 + c2)∥K(t) −K∗∥ ≤ σmin(S
∗). (4.26)

Thus, one can apply Lemma 4.5.2 to get:

C(K(t+1),Σ(t+1))− C(K∗,Σ∗) ≤ c1 + c2
σmin(S∗)

∥K(t) −K∗∥(C(K(t),Σ(t))− C(K∗,Σ∗)). (4.27)

Using the same reasoning as in (4.25) (a) to (c), we have C(K(t),Σ(t))− C(K∗,Σ∗)≥
µσmin

(
R + γB⊤PK∗B

)
∥K(t) −K∗∥2 and plug it in (4.27) finishes the proof.

4.6 Transfer Learning for RL

One can apply the local super-linear convergence result in Theorem 4.5.2 to provide an effi-
cient policy transfer from a well-understood environment to a new yet similar environment.
The idea is to use the optimal policy from the well-understood environment as an initializa-
tion of the policy update. If this initial policy is within the super-linear convergence region
of the new environment, one may efficiently learn the optimal policy in the new environment.
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Problem set-up and main results. We analyze two environments M := (A,B) and
M := (A,B), with (K∗,Σ∗) and (K

∗
,Σ

∗
) as their respective optimal policies and C and C

as their respective objective functions. Assume that one has access to the optimal (regular-
ized) policy (K∗,Σ∗) for environment M, called the well-understood environment. We use
(K∗,Σ∗) as a policy initialization for the less understood environment M, called the new
environment. The goal is to investigate under what conditions this initialization enters the
super-linear convergence regime of M.

Throughout this section, we specify the operator norm ∥ · ∥ as the one associated with
vector q-norm. Namely, for q ∈ (0, 1) and A ∈ Rn1×n2 for some positive integers n1, n2:

∥A∥ := ∥A∥q = supx ̸=0

{
∥Ax∥q
∥x∥q , x ∈ Rn2

}
. For ease of the analysis and to make the two

environments comparable, the following assumptions are made:

Assumption 4.6.1. Assume the following conditions hold:

1. Admissibility: (K∗,Σ∗) is admissible for M and
(
K

∗
,Σ

∗
)

is admissible for M, i.e.,

∥A−BK∗∥ ≤ ρ, ∥A−BK
∗∥ ≤ ρ with ρ ∈ (0, 1√

γ
) and Σ∗ ⪰ 0,Σ

∗ ⪰ 0.

2. Model parameters: ∥B∥q,
∥∥B∥∥

q
≤ 1.

3. Optimal policy: ∥K∗∥ ≤ 1.

The first condition ensures that the environmentsM andM are comparable. The second
and third conditions are for ease of exposition and can be easily relaxed.

Similar to PK defined in (4.16) for environment M, let us define the Riccati equation for
the new environment M as:

PK = γ(A−BK)⊤PK(A−BK) +Q+K⊤RK, (4.28)

and define κ′, c′, c′1, c
′
2 in the same way as (4.23) with (A,B) replacing (A,B).

The following theorem suggests that if the environments M and M are sufficiently close
in the sense of (4.29), then (K∗,Σ∗) serves an efficient initial policy for M which directly
leads to a super-linear convergence for the new learning problem

Theorem 4.6.1. Let cγ,ρ := max{ γ
1−γ ,

γρ
1−γρ2} and δ′ := min

{
1

c′1+c
′
2
σmin(SK∗

,Σ
∗),

ρ−∥A−BK∗∥
∥B∥

}
. If the following condition is satisfied:

(
∥A− A∥q + ∥B −B∥q

)
≤

(
1
µ
− 1

∥S∗∥

)−1

σmin

(
R + γBPK

∗B
)
(δ′)2

4cγ,ρ

(∥∥Ex0∼D[x0x⊤0 ] +W
∥∥
q
+ γ

1−γ + 1
)

∥Q∥+∥R∥
1−γρ2

, (4.29)

then (K∗,Σ∗) is within the super-linear convergence region of environment M, i.e.,

C(K
(t+1)

,Σ
(t+1)

)− C(K
∗
,Σ

∗
) ≤

(c′1 + c′2) ·
(
C(K

(t)
,Σ

(t)
)− C(K

∗
,Σ

∗
)
)1.5

σmin(SK∗
,Σ

∗)

√
µσmin(R + γB

⊤
PK

∗B)

,
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for all t ≥ 0, if the initial policy follows (K
(0)
,Σ

(0)
) = (K∗,Σ∗) and the policy updates

according to (IPO).

Proof. (of Theorem 4.6.1). It is easy to verify that∣∣∣C(K∗
,Σ

∗
)− C(K∗,Σ∗)

∣∣∣ ≤ ∣∣∣C(K∗
,Σ

∗
)− C(K

∗
,Σ

∗
)
∣∣∣+ ∣∣C(K∗,Σ∗)− C(K∗,Σ∗)

∣∣ . (4.30)

For any given policy (K,Σ) that is admissible to both M and M, we have JK,Σ(x) =
x⊤PKx+ qK,Σ and JK,Σ(x) = x⊤PKx+ qK,Σ with some symmetric positive definite matrices

PK , PK ∈ Rn×n satisfying (4.16) and (4.28) respectively. In addition, the constants qK,Σ takes

the form of (4.16) and qK,Σ ∈ R takes the form of qK,Σ = 1
1−γ

(
− τ

2

(
k + log

(
(2π)k detΣ

))
+

tr
(
ΣR + γ(Σ(B)⊤PKB +WPK)

) )
. Note that

PK − PK = γ(A−BK)⊤PK(A−BK)− γ(A−BK)⊤PK(A−BK)

= γ(A− A− (B −B)K)⊤PK(A−BK) + γ(A−BK)⊤PK(A− A− (B −B)K)

+ γ(A−BK)⊤(PK − PK)(A−BK).

Hence we have ∥PK − PK∥ ≤ 2γ(∥A − A∥ + ∥K∥∥B − B∥)∥PK∥ρ + γρ2∥PK − PK∥, and
therefore, since γρ2 < 1,

∥PK − PK∥ ≤ 2γρ

1− γρ2
(∥A− A∥+ ∥K∥ ∥B −B∥)∥PK∥. (4.31)

Similarly,

qK,Σ − qK,Σ =
γ

1− γ

(
Tr
(
(B −B)⊤PK B

)
+ Tr

(
B

⊤
PK (B −B)

)
+Tr

(
B

⊤
(PK − PK)B

)
+ Tr(W (PK − PK))

)
.

Recall that x0 ∼ D and denote D0 = Ex0∼D[x0x
T
0 ]. Therefore,∣∣∣C(K∗

,Σ
∗
)− C(K

∗
,Σ

∗
)
∣∣∣

≤
∣∣∣ tr((PK∗ − PK

∗)(D0 +W )
)∣∣∣+ γ

1− γ

∣∣∣Tr((B −B)⊤PK∗ B
)∣∣∣

+
γ

1− γ

∣∣∣Tr(B⊤
PK∗ (B −B)

)∣∣∣+ γ

1− γ

∣∣∣Tr(B⊤
(PK∗ − PK

∗)B
)∣∣∣

≤ ∥PK∗ − PK
∗∥p∥D0 +W∥q +

γ

1− γ
∥B −B∥p∥PK∗∥q(∥B∥q + ∥B∥q)

+
γ

1− γ
∥PK∗ − PK

∗∥p∥BB
⊤∥q, (4.32)

where the last inequality follows from |Tr(AB)| ≤ ∥A′∥p ∥B∥q when 1/p + 1/q = 1. This
is a consequence of combining von Neumann’s trace inequality with Hölder’s inequality for
Euclidean space.
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(4.16) suggests that, for any admissibleK such that ∥K∥ ≤ 1, we have ∥PK∥ ≤ γρ2∥PK∥+
∥Q∥ + ∥R∥. Hence, ∥PK∥ ≤ ∥Q∥+∥R∥

1−γρ2 . Combining this bound with (4.31) and the fact that

∥B∥q, ∥B∥q, ∥K∗∥ ≤ 1, (4.32) can be bounded such that

(4.32) ≤
(
∥D0 +W∥q +

γ

1− γ

) 2γρ

1− γρ2
∥Q∥+ ∥R∥
1− γρ2

(
∥A− A∥+ ∥B −B∥

)
+

2γ

1− γ

∥Q∥+ ∥R∥
1− γρ2

∥B −B∥q

≤ 2cγ,ρ

(
∥D0 +W∥q +

γ

1− γ
+ 1
)∥Q∥+ ∥R∥

1− γρ2

(
∥A− A∥q + ∥B −B∥q

)
. (4.33)

Similarly, we have∣∣C(K∗,Σ∗)− C(K∗,Σ∗)
∣∣

≤ 2cγ,ρ

(
∥D0 +W∥q +

γ

1− γ
+ 1
)∥Q∥+ ∥R∥

1− γρ2

(
∥A− A∥q + ∥B −B∥q

)
.

(4.34)

Finally, plugging (4.33)-(4.34) into (4.30), we have∣∣∣C(K∗
,Σ

∗
)− C(K∗,Σ∗)

∣∣∣
≤ 4cγ,ρ

(
∥D0 +W∥q +

γ

1− γ
+ 1
)∥Q∥+ ∥R∥

1− γρ2

(
∥A− A∥q + ∥B −B∥q

)
.

(4.35)

4.7 Model-free Extension

Model-based convergence provides a foundation for model-free analysis, as demonstrated
[53, 76] where the more challenging policy convergence analysis for the model-based setting is
followed by a relatively routine sample-based analysis of zeroth-order gradient approximation
[126, 98, 11, 41]. Similarly, our analysis of local superlinear convergence and transfer learning
applications within a model-based framework can be extended to developing a model-free
algorithm, for instance, Algorithm 4.

In the setting with unknown model parameters A,B,Q,R, where the controller has only
simulation access to the model, we apply a zeroth-order optimization method to approximate

the gradient ̂∇KC(K,Σ) and ̂∇ΣC(K,Σ), as in Algorithm 4.

The updating rule for ̂∇KC(K,Σ) is standard [53, 76]. We now explain the expression

for ̂∇ΣC(K,Σ). By Lemma 4.5 and Theorem 4.2, Σ is positive definite (with the time index
t is omitted for ease of exposition). Let L denote the Cholesky decomposition of Σ such
that Σ = LL⊤. Let vec(Σ) ∈ RDΣ and vec(L) ∈ RDΣ denote the stacked vectors of the
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Algorithm 4 Policy Gradient Estimation with Unknown Parameters

Input: K,Σ, the number of trajectories m, smoothing parameter r, dimension DK and
DΣ

Apply Cholesky decomposition to matrix Σ to get L such that Σ = LL⊤.
for i = 1, 2, · · · ,m do
Sample a policy Σ̂i = L̂i(L̂i)

⊤, where vec(L̂i) = vec(L)+Ui, where Ui is drawn uniformly

at random over vectors in RDΣ such that ∥Ui∥F = r. Simulate with policy (K, Σ̂i) from

x0 ∼ D for l steps. Let Ĉi denote the empirical estimates:

Ĉi =
l∑

t=1

γtct,

where ct and xt are the costs and states on this trajectory.
Sample a policy K̂i = K +U ′

i , where U
′
i is drawn uniformly at random over matrices in

Rk×n such that ∥U ′
i∥F = r. Simulate with policy (K̂i,Σi) from x0 ∼ D for l steps and

let Ĉ ′
i and Ŝ

′
i denote the empirical estimates:

Ĉ ′
i =

l∑
t=1

γtc′t, Ŝ ′
i =

l∑
t=1

γtx′tx
⊤
t .

end for
return the estimates of ∇KC(K,Σ),∇ΣC(K,Σ), SK,Σ:

̂∇vec(Σ)C(K,Σ) =
(
∇vec(L)vec(Σ̂(L̂))

⊤
)−1

·

(
1

m

m∑
i=1

DΣ

r2
ĈiUi

)
,

̂∇KC(K,Σ) =
1

m

l∑
m=1

γt
DK

r2
Ĉ ′
iU

′
i , ŜK,Σ =

1

m

m∑
i=1

Ŝ ′
i.
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lower-triangular entries in matrices Σ ∈ Rk×k and L ∈ Rk×k respectively, with DΣ := k(k+1)
2

.
Similarly, denote vec(K) ∈ RDK as the stacked vectors of all entries in K ∈ Rk×n, with
DK := k × n. Then ∇vec(L)C(K,Σ) = ∇vec(L)vec(Σ(L))

⊤ · ∇vec(Σ)C(K,Σ). In Algorithm 4,
we approximate ∇vec(L)C(K,Σ) with zeroth-order estimate and the above equation to get

̂∇vec(Σ)C(K,Σ). The estimate ̂∇ΣC(K,Σ) can be obtained by rearranging the entries of
̂∇vec(Σ)C(K,Σ) into a matrix form.

4.8 Numerical Experiments

This section provides numerical experiments using (RPG) and (IPO) to illustrate the results
established in Section 4.4, 4.5, and 4.6.

Setup. (1) Parameters: A ∈ Rn×n, B ∈ Rn×k, Q ∈ Sn+, R ∈ Sk++ are generated randomly.
The scaling of A is chosen so that A is stabilizing with high probability (σmax(A) <

1√
γ
).

Initialization: K
(0)
i,j = 0.01 for all i, j, Σ(0) = I.

(2) Transfer learning setup: A and B are the state transition matrices which are generated
by adding a perturbation to A and B: Ai,j = Ai,j +ui,j, Bi,j = Bi,j +u′i,j, where ui,j and u

′
i,j

are sampled from a uniform distribution on [0, 10−3]. The initialization of K and Σ are the
optimal solution K∗ and Σ∗ with state transition matrices A and B.

Performance measure. We use normalized error to quantify the performance of a given
policy K,Σ, i.e., normalized error = C(K,Σ)−C(K∗,Σ∗)

C(K∗,Σ∗)
, where K∗,Σ∗ is the optimal policy

defined in Theorem 4.2.1.

(Fast) Convergence. Figure 4.1a shows the linear convergence of (RPG), and Figure 4.1b
shows the superior convergence rate of (IPO). The normalized error falls below 10−14 within
just 6 iterations, and from the third iteration, it enters a region of super-linear convergence.
Figure 4.1c shows the result of applying transfer learning using (IPO) in a perturbed envi-
ronment, when the optimal policy in Figure 4.1a and 4.1b serves as an initialization. Figure
4.1c shows that if the process commences within a super-linear convergence region, then the
error falls below 10−12 in just two epochs.

Regularization parameter τ . To demonstrate that entropy regularization can accelerate
convergence, we conduct experiments with (RPG) under two settings: n = 200, k = 10 and
n = 200, k = 50. We run (RPG) using various values of τ . Figure 4.2 illustrates that, in both
settings, a larger value of τ results in a faster linear convergence rate to the optimal solution
of (4.14). These results confirm that increasing the regularization parameter enhances the
convergence speed, highlighting the practical benefits of entropy regularization in achieving
faster optimization.
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(a) (b) (c)

Figure 4.1: Performances of RPG, IPO, and transfer learning with IPO
Note. (a) Training error using RPG; (b) Training error using IPO; (c) Training error of transfer learning

using IPO with (K
(0)

,Σ
(0)

) = (K∗,Σ∗) and state transitions (A,B). n = 400, k = 200. The regularization

parameter τ is chosen to be σmin(R).

Figure 4.2: RPG with different regularization parameters τ
Note. Left: n = 200, k = 10; Right: n = 200, k = 50.

Figure 4.3: Comparison between IPO and Gauss-Newton update
Note. The Gauss-Newton update on K with constant covariance matrix follows (4.36); n = 200, k = 50.

Left: τ = 0.01; Right: τ = 0.5.
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The importance of updating Σ. As discussed in Section 4.5, updating K in (IPO)
is identical to updating step of the Gauss-Newton algorithm in an unregularized setting.
However, unlike the Gauss-Newton algorithm, (IPO) also updates the covariance matrix Σ
simultaneously. To see the effect of dynamic updating of Σ, we compare the performance of
(IPO) with the Gauss-Newton update on K with a constant covariance matrix Σ given by:

K(t+1) = K(t) −
(
R + γB⊤PK(t)B

)−1
EK(t) ,

Σ(t+1) = σI,
(4.36)

where σ is a fixed positive scalar. Figure 4.3 illustrates that the (IPO) algorithm with
updates of Σ achieves a noticeably faster and superlinear convergence rate, compared to the
Gauss-Newton update with a fixed Σ. This dynamic update of Σ allows (IPO) to reach the
optimal point of Problem (4.14) more efficiently, highlighting the importance of adapting
the covariance matrix during iterations.

4.9 Proofs of Main Results

4.9.1 Proofs in Section 4.2

4.9.1.1 Proof of Lemma 4.2.1

Denote the domain of the decision variable as X = {p : A 7→ [0,∞)}, and the feasible set as
F = {p : A 7→ [0,∞) |

∫
A p(u)du = 1} ⊆ X . Let f : X 7→ R denote the objective function,

i.e.,
f(p) = Eu∼p(·)

[
u⊤Mu+ b⊤u+ τ log p(u)

]
.

Let λ be a Lagrangian multiplier to the constraint
∫
A p(u)du = 1. Consider

L(p, λ) =
∫
A

(
u⊤Mu+ b⊤u+ τ log p(u)

)
p(u)du+ λ

(∫
A
p(u)du− 1

)
=

∫
A
L (u, p(u), λ) du− λ,

where L(u, v, λ) := (u⊤Mu+ b⊤u)v+ τv log v+ λv. Additionally, define g(λ) = infX L(p, λ).
We now show the strong duality result:

g(λ∗) = inf
p∈F

f(p), (4.37)

with λ∗ = argmaxλ∈R g(λ).
First, the weak duality result follows from

g(λ) = inf
p∈X

L(p, λ) ≤ inf
p∈F

L(p, λ) = inf
p∈F

f(p), for any λ ∈ R. (4.38)
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Moreover, since ∂L
∂v
(u, v, λ) = λ + u⊤Mu + b⊤u + τ + τ log v, for any λ ∈ R, u ∈ A, the

minimizer pλ(u) of L(u, ·, λ) satisfies

pλ(u) = exp

(
−1

τ
(λ+ u⊤Mu+ b⊤u)− 1

)
. (4.39)

Therefore, by applying (4.39) to (4.38), we have

g(λ) = L(pλ, λ) = −τ
(
exp

(
−λ
τ
− 1

)
· C +

λ

τ

)
, (4.40)

where C :=
∫
A exp

(
− 1
τ
(u⊤Mu+ b⊤u)

)
du. Direct computation yields the maximizer of g in

(4.38) as λ∗ = τ logC − τ . Plugging λ∗ to (4.39) shows
∫
A pλ∗(u)du = 1, implying pλ∗ ∈ F

and the strong duality (4.37) holds. Finally, by (4.37) and (4.39), it is clear that the optimal
solution is a multivariate Gaussian distribution with N

(
−1

2
M−1b, τ

2
M−1

)
.

4.9.2 Proofs in Section 4.3

4.9.2.1 Proof of Lemma 4.3.1

∇ΣC(K,Σ) in (4.17) can be checked by direct gradient calculation. To verify ∇KC(K,Σ) in
(4.17), first define f : X × Rk×n → R by f(y,K) := y⊤PKy,∀y ∈ X and we aim to find the
gradient of f with respect to K. For any y ∈ X , by the Riccati equation for PK in (4.16) we
have

f(y,K) = y⊤
(
γ(A−BK)⊤PK(A−BK) +Q+K⊤RK

)
y

= γf ((A−BK)y,K) + y⊤
(
Q+K⊤RK

)
y.

∇Kf((A−BK)y,K) has two terms: one with respect to the input (A−BK)y and one with
respect to K in the subscript of PK . This implies

∇Kf(y,K) = 2
(
−γB⊤PK(A−BK) +RK

)
yy⊤ + γ∇Kf(y

′, K)|y′=(A−BK)y (4.41)

= 2
(
−γB⊤PK(A−BK) +RK

) ∞∑
i=0

γi(A−BK)iyy⊤(A⊤ −K⊤B⊤)i.
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Since C(K,Σ) = Ex0∼D[x0PKx0]+qK,Σ with PK and qK,Σ satisfying (4.16), then the gradient
of C(K,Σ) with respect to K is

∇KC(K,Σ) =E[∇Kf(x0, K)] +∇KqK,Σ
(a)
=E
[
2
(
−γB⊤PK(A−BK) +RK

)
x0x

⊤
0 + γ∇Kf(x̂1, K)|x̂1=(A−BK)x0

+
∑
t=0

γt+1
(
∇K(ΣB

⊤PKB) +∇K(w
⊤
t PKwt)

) ]
(b)
=E
[
2
(
−γB⊤PK(A−BK) +RK

)
x0x

⊤
0 + γ∇Kf(x1, K)|x1=A+Bu0+w0

+
∑
t=1

γt+1
(
∇K(ΣB

⊤PKB) +∇K(w
⊤
t PKwt)

) ]
(c)
=2
(
−γB⊤PK(A−BK) +RK

)
E

[
∞∑
i=0

γixix
⊤
i

]
,

where (a) follows from applying (4.41) with y = x0 and taking the gradient of qK,Σ in (4.16)
with respect to K; (b) follows from

Ex0,u0,w0 [f(Ax0 +Bu0 + w0), K] = Ex0,w0 [f ((A−BK)x0, K) + w⊤
0 PKw0] + ΣB⊤PKB.

Using recursion to get (c).

4.9.2.2 Proof of Lemma 4.3.2

For a given policy πK,Σ(·|x) = N (−Kx,Σ) with parameter K and Σ, we define the state-
action value function (also known as Q-function) QK,Σ : X ×A → R as the cost of the policy
starting with x0 = x, taking a fixed action u0 = u and then proceeding with πK,Σ. The
Q-function is related to the value function JK,Σ defined in (4.1) as

QK,Σ(x, u) =x
⊤Qx+ u⊤Ru+ τπK,Σ(u|x) + γE [JK,Σ(Ax+Bu+ w)] , (4.42)

for any (x, u) ∈ X × A. By definition of the Q-function, we also have the relationship
JK,Σ(x) = Eu∼π(·|x) [QK,Σ(x, u)] , ∀x ∈ X . We then introduce the advantage function AK,Σ :
X ×A → R of the policy π:

AK,Σ(x, u) = QK,Σ(x, u)− JK,Σ(x), (4.43)

which reflects the gain one can harvest by executing control u instead of following the policy
πK,Σ in state x.

With the notations of the Q-function in (4.42) and the advantage function in (4.43), we
first provide a convenient form for the difference of the cost functions with respect to two
different policies in Lemma 4.9.1. This will be used in the proof of Lemma 4.3.2.



CHAPTER 4. POLICY GRADIENT AND POLICY OPTIMIZATION METHODS 132

Lemma 4.9.1 (Cost difference). Suppose policies π and π′ are in form of (4.13) with parame-
ters (K ′,Σ′) and (K,Σ). Let {x′t}∞t=0 and {u′t}∞t=0 be state and action sequences generated by π′

with noise sequence {w′
t}∞t=0 (i.i.d with mean 0 and covarianceW ), i.e., x′t+1 = Ax′t+Bu

′
t+w

′
t.

Then for any x ∈ X ,

JK′,Σ′(x)− JK,Σ(x) = Eπ′

[
∞∑
t=0

γtAK,Σ(x
′
t, u

′
t)

∣∣∣∣∣x′0 = x

]
, (4.44)

where the expectation is taken over u′t ∼ π′(·|x′t) and wt for all t = 0, 1, 2, · · · .
The expected advantage for any x ∈ X by taking expectation over u ∼ π′(·|x) is:

Eπ′ [AK,Σ(x, u)] = x⊤(K ′ −K)⊤(R + γB⊤PKB)(K ′ −K)x

+ 2x⊤(K ′ −K)⊤
[
(R + γB⊤PKB)K − γB⊤PKA

]
x+ (1− γ)(fK(Σ)− fK(Σ

′)).
(4.45)

Lemma 4.9.1 takes a similar form as [53, Lemma 10], but with an additional terms on Σ.
The proof of Lemma 4.9.1 is provided in the online companion.

Proof. (of Lemma 4.3.2). By Lemma 4.9.1, for any π and π′ in form of (4.13) with parameter
(K,Σ) and (K ′,Σ′) respectively, and for any x ∈ X ,

Eπ′ [AK,Σ(x, u)] = (1− γ)(fK(Σ)− fK(Σ
′))− tr

(
xx⊤E⊤

K

(
R + γB⊤PKB

)−1
EK

)
+ tr

[
xx⊤

(
K ′ −K +

(
R + γB⊤PKB

)−1
EK

)⊤ (
R + γB⊤PKB

)
·
(
K ′ −K + (R + γB⊤PKB)−1EK

)]
≥ − tr

(
xx⊤E⊤

K

(
R + γB⊤PKB

)−1
EK

)
+ (1− γ) (fK (Σ)− fK (Σ′)) , (4.46)

with equality when K − (R + γB⊤PKB)−1EK = K ′ holds. Let {x∗t}∞t=0 and {u∗t}∞t=0 be the
state and control sequences generated under π∗(·|x) = N (−K∗x,Σ∗) with noise sequence
{w∗

t }∞t=0 with mean 0 and covariance W . Apply Lemma 4.9.1 and (4.46) with π and π∗ to
get:

C(K,Σ)− C(K∗,Σ∗) = −Eπ∗

[
∞∑
t=0

γtAK,Σ(x
∗
t , u

∗
t )

]
≤ tr

(
SK∗,Σ∗E⊤

K

(
R + γB⊤PKB

)−1
EK

)
+ fK(Σ

∗)− fK(Σ), (4.47)

where fK is defined in (4.15). To analyze the first term in (4.47), note that

tr
(
SK∗,Σ∗E⊤

K

(
R + γB⊤PKB

)−1
EK

)
≤ ∥SK∗,Σ∗∥

σmin(R)
Tr(E⊤

KEK)

≤ ∥SK∗,Σ∗∥
µ2σmin(R)

tr
(
SK,ΣE

⊤
KEKSK,Σ

)
=

∥SK∗,Σ∗∥
4µ2σmin(R)

tr(∇⊤
KC(K,Σ)∇KC(K,Σ)),

(4.48)
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where the last equation follows from (4.17).
To analyze the second terms in (4.47), note that fK is a concave function, thus we

can find its maximizer Σ∗
K by taking the gradient of fK and setting it to 0, i.e., Σ∗

K =
τ
2
(R + γB⊤PKB)−1. Thus,

fK(Σ
∗)− fK(Σ) ≤ fK(Σ

∗
K)− fK(Σ)

(a)

≤ Tr
(
∇fK(Σ)⊤(Σ∗

K − Σ)
)

= Tr
(
∇ΣC(K,Σ) · (R + γB⊤PKB)−1

(
(R + γB⊤PKB)− τ

2
Σ−1

)
Σ
)

(b)

≤ (1− γ) · ∥(R + γB⊤PKB)−1∥ · ∥∇ΣC(K,Σ)∥2F ≤ (1− γ)∥∇ΣC(K,Σ)∥2F
σmin(R)

,

(4.49)

where (a) follows from the first order concavity condition for fK and (b) is from 0 ≺ Σ ⪯ I.
Plug (4.48) and (4.49) into (4.47) to get (4.18).

For the lower bound, consider K ′ = K − (R + γB⊤PKB)−1EK and Σ′ = Σ where
equality holds in (4.46). Let {x′t}∞t=0, {u′t}∞t=0 be the sequence generated with K ′,Σ′. By
C(K∗,Σ∗) ≤ C(K ′,Σ′), we have

C(K,Σ)− C(K∗,Σ∗) ≥ C(K,Σ)− C(K ′,Σ′) = −E

[
∞∑
t=0

γtAK,Σ(x
′
t, u

′
t)

]
= tr

(
SK′,Σ′E⊤

K

(
R + γB⊤PKB

)−1
EK

)
≥ µ

∥R + γB⊤PKB∥
Tr(E⊤

KEK).

(4.50)

4.9.2.3 Proof of Lemma 4.3.3

Lemma 4.9.2 shows that the cost objective is smooth in Σ when utilizing entropy regular-
ization, given that Σ is bounded.

Lemma 4.9.2 (Smoothness of fK (4.15)). Let K ∈ Rk×n be given and let fK be defined
in (4.15). Fix 0 < a ≤ 1. For any symmetric positive definite matrices X ∈ Rk×k and
Y ∈ Rk×k satisfying aI ⪯ X ⪯ I and aI ⪯ Y ⪯ I,∣∣fK(X)− fK(Y ) + Tr

(
∇fK(X)⊤(Y −X)

)∣∣ ≤Ma tr
(
(X−1Y − I)2

)
,

where Ma ∈ R is defined in Lemma 4.3.3, and Ma ≥ τ
4(1−γ) .

Proof. (of Lemma 4.9.2). Fix symmetric positive definite matrices X and Y satisfying
aI ⪯ X ⪯ I and aI ⪯ Y ⪯ I. Then fK being concave implies fK(X) − fK(Y ) +
Tr
(
∇fK(X)⊤(Y −X)

)
≥ 0. To find an upper bound, observe that

fK(X)− fK(Y ) + Tr
(
∇fK(X)⊤(Y −X)

)
=

τ

2(1− γ)

(
log det(X)− log det(Y ) + Tr

(
X−1(Y −X)

))
.

(4.51)
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SinceX ≻ 0 and Y ≻ 0, then all eigenvalues ofX−1Y are real and positive and σmin(X
−1Y ) ≥

σmin(X
−1)σmin(Y ) ≥ a.

Now let us show that there existsm ∈ R+ (independent of K) such that for any Z ∈ Rk×k

with real positive eigenvalues a ≤ z1 ≤ · · · ≤ zk, the following holds:

− log(det(Z)) + tr(Z − I) ≤ m tr((Z − I)2). (4.52)

Note that (4.52) is equivalent to
∑k

i=1 − log(zi) + zi − 1 ≤ m
∑k

i=1(zi − 1)2. With elemen-
tary algebra, one can verify that when m := (− log (a) + a− 1) · (a− 1)−2, it holds that
− log(z) + z − 1 ≤ m(z − 1)2 for all z ≥ a and such an m satisfies m ≥ 1

2
. Therefore,

(4.52) holds. Combining (4.51) and (4.52) with Z = X−1Y , we see fK(X) − fK(Y ) +
tr
(
∇fK(X)⊤(Y −X)

)
≤ τm

2(1−γ) tr ((X
−1Y − I)2) .

Proof. (of Lemma 4.3.3). The first equality immediately results from (4.45) in Lemma 4.9.1.
The last inequality follows directly from Lemma 4.9.2.

4.9.3 Proofs in Section 4.4

4.9.3.1 Proofs of Lemma 4.4.1

To ease the exposition, let η denote η2. The proof is composed of two steps. First, one can
show

aI ⪯ Σ− η(1− γ)−1(R− τ

2
Σ−1 + γB⊤PKB) ⪯ I. (4.53)

Let g : R+ → R be a function such that g(x) = x+ ητ
2(1−γ)x . Thus, g monotonically increases

on
[√

ητ
2(1−γ) ,∞

)
. Since

√
ητ

2(1−γ) ≤ a ≤ σmin(R)
∥R+γB⊤PKB∥ ≤ 1, then

Σ +
ητ

2(1− γ)
Σ−1 − η(R + γB⊤PKB)

1− γ
⪰
(
a+

ητ

2(1− γ)a

)
I − η(R + γB⊤PKB)

1− γ

⪰
(
a+

η∥R + γB⊤PKB∥
1− γ

)
I − η(R + γB⊤PKB)

1− γ
⪰ aI, and

Σ +
ητ

2(1− γ)
Σ−1 − η(R + γB⊤PKB)

1− γ
⪯
(
1 +

ητ

2(1− γ)

)
I − η(R + γB⊤PKB)

1− γ

⪯
(
1 +

ησmin(R)

1− γ

)
I − η(R + γB⊤PKB)

1− γ
⪯ I, hence (4.53).

Second, one can show aI ⪯ Σ′ ⪯ I : observe that (4.53) is equivalent to aI −Σ ⪯ − η
1−γ (R+

γB⊤PKB − τ
2
Σ−1) ⪯ I − Σ. Then by multiplying Σ to both sides then adding a Σ to each

term, we have

aΣ2 − Σ3 + Σ ⪯ Σ− η

1− γ
Σ(R + γB⊤PKB − τ

2
Σ−1)Σ ⪯ Σ2 − Σ3 + Σ.

With aI − Σ ⪯ 0, I − Σ ⪰ 0 and Σ ⪯ I, it holds that aI − Σ ⪯ (aI − Σ)Σ2, and
I − Σ ⪰ (I − Σ)Σ2. This implies aI ⪯ aΣ2 − Σ3 + Σ ⪯ Σ′ ⪯ Σ2 − Σ3 + Σ ⪯ I.
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4.9.4 Proof of Lemma 4.4.2

For ease of exposition, write S = SK,Σ, S
′ = SK′,Σ′ , and S∗ = SK∗,Σ∗ . Let Ma be defined in

the same way as in Lemma 4.3.3. Let fK be defined as (4.15). Then Lemma 4.3.3 implies

C(K ′,Σ′)− C(K,Σ) = Tr
(
S ′(K ′ −K)⊤(R + γB⊤PKB)(K ′ −K)

)
+ 2Tr

(
S ′(K ′ −K)⊤EK

)
+ fK(Σ)− fK(Σ

′).
(4.54)

By (RPG),

tr
(
S ′(K ′ −K)⊤(R + γB⊤PKB)(K ′ −K)

)
+ 2Tr

(
S ′(K ′ −K)⊤EK

)
≤4η21∥R + γB⊤PKB∥Tr

(
S ′E⊤

KEK
)
− 4η1Tr

(
S ′E⊤

KEK
) (a)

≤ −2η1Tr
(
S ′E⊤

KEK
)

≤− 2η1µTr
(
E⊤
KEK

) (b)

≤ −2η1µ
σmin(R)

∥S∗∥
tr
(
SK∗,Σ∗E⊤

K

(
R + γB⊤PKB

)−1
EK

)
,

(4.55)

where (a) follows from η1 ≤ (2∥R + γB⊤PKB∥)−1 and (b) follows from (4.48).
By Lemma 4.4.1, aI ⪯ Σ′ ⪯ I. Then by Lemma 4.9.2,

fK(Σ)− fK(Σ
′)

≤ − η2
(1− γ)2

tr
((
R + γB⊤PKB − τ

2
Σ−1

)
Σ
(
R + γB⊤PKB − τ

2
Σ−1

)
Σ
)

+
(η2)

2Ma

(1− γ)2
tr

((
(R + γB⊤PKB)Σ− τ

2
I
)2)

(c)

≤ − η2
2(1− γ)2

tr

((
(R + γB⊤PKB)Σ− τ

2
I
)2)

.

Here (c) follows from the inequality η2 =
2(1−γ)a2

τ
≤ 2(1−γ)

τ

(
τ

2∥R+γB⊤PKB∥

)2 (d)

≤ 2(1−γ)
τ

(e)

≤ 1
2Ma

,

where (d) is obtained from the fact that τ ≤ 2σmin(R) ≤ 2∥R + γB⊤PKB∥, and (e) follows
from Lemma 4.9.2. Meanwhile, observe from (4.49) that

fK(Σ
∗)− fK(Σ) ≤

1

(1− γ)
tr
((

(R + γB⊤PKB)Σ− τ

2
I
)
·

Σ−1(R + γB⊤PKB)−1
(
(R + γB⊤PKB)Σ− τ

2
I
))

≤ 1

(1− γ)aσmin(R)
tr
(
((R + γB⊤PKB)Σ− τ

2
I)2
)
,

while implies

fK(Σ)− fK(Σ
′) ≤ −η2aσmin(R)

2(1− γ)
(fK(Σ)− fK(Σ

∗)) . (4.56)

Finally, with ζ = min
{

2µη1σmin(R)
∥S∗∥ , η2aσmin(R)

2(1−γ)

}
, plug (4.55) and (4.56) in (4.54) to get C(K ′,Σ′)−

C(K,Σ) ≤ −ζ
(
tr
(
SK∗,Σ∗E⊤

K

(
R + γB⊤PKB

)−1
EK

)
+ fK(Σ)− fK(Σ

∗)
)
. The proof is fin-

ished by applying (4.47) then adding C(K,Σ)− C(K∗,Σ∗) to both sides.
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4.9.4.1 Proof of Lemma 4.4.3

By (4.14) and (4.16),

C(K,Σ) =Ex0∼D
[
x⊤0 PKx0

]
+

γ

1− γ
Tr(WPK)

+
1

1− γ
Tr
(
Σ(R + γB⊤PKB)

)
− τ

2(1− γ)
(k + log((2π)k detΣ)).

Note that

1

1− γ
Tr
(
Σ(R + γB⊤PKB)

)
− τ

2(1− γ)
(k + log((2π)k detΣ))

≥ 1

1− γ

(
σmin(R) Tr(Σ)−

τ

2
(k + k log(2π))− τ

2
log detΣ

)
(a)

≥ 1

1− γ

(
τk

2
− τ

2
(k + k log(2π))− τk

2
log(

τ

2σmin(R)
)

)
=Mτ ,

where (a) follows from the fact that σmin(R) Tr(Σ)− τ
2

(
k + k log(2π)− τ

2
log detΣ

)
is a con-

vex function with respect to Σ with minimizer τ
2σmin(R)

I. Thus, C(K,Σ) ≥ Ex0∼D
[
x⊤0 PKx0

]
+

γ Tr(WPK)
1−γ +Mτ ≥

(
µ+ γσmin(W )

1−γ

)
∥PK∥+Mτ .

4.9.5 Proofs in Section 4.5

4.9.5.1 Proof of Lemma 4.5.1

Fix K,Σ and let fK be defined in (4.15). Observe that Σ′ following (IPO) update is the
maximizer of fK . Then by Lemma 4.3.3,

C(K ′,Σ′)− C(K,Σ) = −Tr
(
SK′,Σ′E⊤

K(R + γB⊤PKB)−1EK
)
− fK(Σ

′) + fK(Σ)

(a)

≤ − µ

∥SK∗,Σ∗∥
tr
(
SK∗,Σ∗E⊤

K(R + γB⊤PKB)−1EK
)
− µ

∥SK∗,Σ∗∥
(fK(Σ

′)− fK(Σ))

(b)

≤ − µ

∥SK∗,Σ∗∥

(
tr
(
SK∗,Σ∗E⊤

K(R + γB⊤PKB)−1EK
)
+ fK(Σ

∗)− fK(Σ)

)
,

where (a) follows the fact that fK(Σ
′) − fK(Σ) ≥ 0 and 0 < µ

∥SK∗,Σ∗∥ ≤ 1; (b) follows

from fact that fK(Σ
′) ≥ fK(Σ

∗). Finally, apply (4.47) to get C(K ′,Σ′) − C(K,Σ) ≤
− µ

∥SK∗,Σ∗∥ (C(K,Σ)− C(K∗,Σ∗)) and add C(K,Σ) − C(K∗,Σ∗) to both sides finishes the

proof.
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4.9.5.2 Proof of Lemma 4.5.2

Let K ′ denote K(t+1), K denote K(t) and S ′ denote S(t+1). Apply Lemma 4.3.3 with fK
defined in (4.15) to get

C(K ′,Σ′)− C(K,Σ)

=− Tr
(
S∗E⊤

K(R + γB⊤PKB)−1EK
)
− Tr

(
(S ′ − S∗)E⊤

K(R + γB⊤PKB)−1EK
)

+ fK(Σ)− fK(Σ
′)

(a)

≤
(
−1 + ∥(S ′ − S∗)S∗−1∥

) (
Tr
(
S∗E⊤

K(R + γB⊤PKB)−1EK
)
+ fK(Σ

∗)− fK(Σ)
)
,

where (a) follows from the assumption ∥S ′ − S∗∥ ≤ σmin(S
∗) which implies

−1 +
∥∥(S ′ − S∗)S∗−1

∥∥ ∈ [−1, 0],

and the fact Σ′ is the maximizer of fK . Finally, by (4.47),

C(K ′,Σ′)− C(K,Σ) ≤
(
−1 +

∥∥(S ′ − S∗)S∗−1
∥∥) (C(K,Σ)− C(K∗,Σ∗))

≤
(
−1 +

∥S ′ − S∗∥
σmin(S∗)

)
(C(K,Σ)− C(K∗,Σ∗)) .

Adding C(K,Σ)− C(K∗,Σ∗) to both sides of the above inequality finishes the proof.

4.9.5.3 Proof of Lemma 4.5.3

This section conducts a perturbation analysis on SK,Σ and aims to prove Lemma 4.5.3, which
bounds ∥SK1,Σ1 − SK2,Σ2∥ by ∥K1 −K2∥ and ∥Σ1 − Σ2∥.

The proof of Lemma 4.5.3 proceeds with a few technical lemmas. First, define the linear
operators on symmetric matrices. For symmetric matrix X ∈ Rn×n, we set

FK(X) := (A−BK)X(A−BK)⊤, GKt (X) := (A−BK)tX(A−BK)⊤t

TK(X) :=
∞∑
t=0

γt(A−BK)tX(A−BK)⊤t =
∞∑
t=0

γtGKt (X).
(4.57)

Note that when ∥A−BK∥ < 1√
γ
, we have

TK = (I − γFK)
−1. (4.58)

We also define the induced norm for these operators as ∥T∥ := supX
∥T (X)∥
∥X∥ , where T =

FK ,GKt , TK and the supremum is over all symmetric matrix X ∈ Rn×n with non-zero spectral
norm.

We also define the induced norm for these operators as ∥T∥ := supX
∥T (X)∥
∥X∥ , where T =

FK ,GKt , TK and the supremum is over all symmetric matrix X ∈ Rn×n with non-zero spectral
norm.
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Lemma 4.9.3. SK,Σ = TK(E[x0x⊤0 ]) +
∑∞

t=0 γ
t
∑t

s=1 GKt−s(BΣB⊤ +W ), for any K,Σ ∈ Ω.

Lemma 4.9.4. ∥FK1 −FK2∥ ≤ (∥A−BK1∥+∥A−BK2∥)∥B∥ ∥K1 −K2∥ , for any K1 and
K2 in Ω.

Lemma 4.9.5.
∑T−1

t=0 ∥(G ′
t − Gt)(X)∥ ≤ 2−ρ2−ρ2T

(1−ρ2)2 ∥F ′ − F∥∥X∥, ∀T ≥ 1, and ∥(TK1 −
TK2)(X)∥ ≤

∑∞
t=0 γ

t∥(GK1
t −GK2

t )(X)∥ ≤ ξγ,ρ∥FK1 −FK2∥∥X∥, for any K1 ∈ Ω and K2 ∈ Ω,
with ξγ,ρ defined in (4.22).

Proofs of Lemma 4.9.3, 4.9.4, and 4.9.5 can be found in the online companion.

Proof. (of Lemma 4.5.3). Denote Gt = GK1
t ,G ′

t = GK2
t , T = TK1 , T ′ = TK2 ,F = FK1 and

F ′ = FK2 to ease the exposition. Observe that

∥SK1,Σ1 − SK2,Σ2∥
(a)

≤ ∥(T − T ′)E[x0x⊤0 ]∥+ ∥
∞∑
t=0

γt
t∑

s=1

(G ′

s − Gs)(BΣ1B
⊤ +W )∥

+
∞∑
t=0

γt
t∑

s=1

∥G ′
t−s(BΣ1B

⊤ +W )− G ′
t−s(BΣ2B

⊤ +W )∥

(b)

≤ ξγ,ρ∥F − F ′∥∥E[x0x⊤0 ]∥+
∞∑
t=0

γt
2− ρ2 − ρ2t

(1− ρ2)2
∥F ′ −F∥∥BΣ1B

⊤ +W∥

+
∞∑
t=0

γt
t∑

s=1

ρ2(t−s)∥B∥2∥Σ1 − Σ2∥,

where (a) is from (4.12) and (b) follows from Lemma 4.9.5 and ∥Gt(X) − Gt(X ′)∥ = ∥(A −
BK)t(X −X ′)(A−BK)⊤t∥ ≤ ρ2t∥X −X ′∥, ∀X,X ′ ∈ Rn×n,∀t ≥ 0. Finally, applying (4.22)
and Lemma 4.9.4 finishes the proof.

4.9.5.4 Proof of Lemma 4.5.4

The objective of this section is to provide a bound for ∥S(t+1)−S∗∥ in terms of ∥K(t)−K∗∥,
as summarized in Lemma 4.5.4.

Note that Lemma 4.5.3 can be employed to derive a bound on ∥S(t+1)−S∗∥ in relation to
∥K(t+1)−K∗∥ and ∥Σ(t+1)−Σ∗∥. In this section, we further establish this bound by deriving
bounds for ∥K(t+1) −K∗∥ and ∥Σ(t+1) −Σ∗∥ in terms of ∥K(t) −K∗∥ and ∥PK(t) −PK∗∥ (cf.
Lemma 4.9.6 and Lemma 4.9.7). Additionally, the perturbation analysis for PK in Lemma
4.9.8 demonstrates ∥PK(t) −PK∗∥ can be bounded by ∥K(t)−K∗∥, which completes the proof
for Lemma 4.5.4.

Lemma 4.9.6 (Bound of one-step update of K). Assume the update of parameter K follows
the updating rule in (IPO). Then it holds that:

∥K(t+1) −K∗∥ ≤
(
1 + σmin(R)∥γB⊤PK∗B +R∥

)
· ∥K(t) −K∗∥

+ γσmin(R)
(
∥B∥∥A∥+ ∥B∥2κ

)
· ∥PK(t) − PK∗∥.
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Proof. (of Lemma 4.9.6). Let K ′ denote K(t+1) and K denote K(t) to ease the notation.
Theorem 4.2.1 shows that for an optimal K∗,

K∗ = γ(R + γB⊤PK∗B)−1B⊤PK∗A.

Then, by the definition of EK in Lemma 4.3.1,

EK∗ = −γB⊤PK∗A+ (γB⊤PK∗B +R)K∗ = 0. (4.59)

Now we bound the difference between K ′ −K:

∥K ′ −K∗∥ = ∥K − (R + γB⊤PKB)−1EK −K∗ + (R + γB⊤PKB)−1EK∗∥
≤ ∥K −K∗∥+ ∥(R + γB⊤PK∗B)−1∥∥EK∗ − EK∗∥
≤ ∥K −K∗∥+ σmin(R)∥EK − EK∗∥. (4.60)

To bound the difference between EK and EK∗ , observe:

∥EK − EK∗∥ ≤ γ∥B∥∥A∥∥PK − PK∗∥+ ∥(γB⊤PK∗B +R)K∗ − (γB⊤PK∗B +R)K∥
+∥(γB⊤PK∗B +R)K − (γB⊤PKB +R)K∥

≤ γ∥B∥∥A∥∥PK − PK∗∥+ ∥γB⊤PK∗B +R∥∥K∗ −K∥
+γ∥B∥2∥PK∗ − PK∥∥K∥. (4.61)

Combining (4.60) and (4.61), then using κ ≥ ∥K∥ for any K ∈ Ω completes the proof.

Lemma 4.9.7 (Bound of one-step update of Σ). Suppose {K(t),Σ(t)}∞t=0 follows the update

rule in (IPO). Then we have ∥Σ(t+1) − Σ∗∥ ≤ τγ∥B∥2
σmin(R)

∥PK(t) − PK∗∥.

Proof. Observe from (IPO) and (4.5) that∥∥Σ(t+1) − Σ∗∥∥ =
τ

2

∥∥(R + γB⊤PK(t)B)−1 − (R + γB⊤PK∗B)−1
∥∥

=
τ

2

∥∥(R + γB⊤PK(t)B)−1 · γB⊤ (PK(t) − PK∗)B · (R + γB⊤PK∗B)−1
∥∥

≤ τγ∥B∥2

2σmin(R)2
∥PK(t) − PK∗∥ .

Lemma 4.9.8 perform perturbation analysis on PK and establish bounds for the difference
in PK with respect to the perturbation inK. Consequently, both ∥K(t+1)−K∗∥ and ∥Σ(t+1)−
Σ∗∥ (in Lemma 4.9.6 and Lemma 4.9.7) can be bounded in terms of ∥K(t) −K∗∥.

Lemma 4.9.8 (PK perturbation). For any K ∈ Ω, with c defined in (4.23), ∥PK − PK∗∥ ≤
c∥K −K∗∥.
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Proof. Fix K ∈ Ω. By (4.58) and (4.16),

T −1
K (PK) = (I − γFK)(PK) = PK − γ(A−BK)⊤PK(A−BK) = Q+K⊤RK,

which immediately implies PK = TK(Q+K⊤RK). Similarly PK∗ = TK∗(Q+K∗⊤RK∗). To
bound the difference between PK and PK∗ , observe that,

∥PK − PK∗∥ ≤
∥∥TK (Q+K⊤RK

)
− TK∗

(
Q+K⊤RK

)∥∥+ ∥TK∗∥∥K∗⊤RK∗ −K⊤RK∥.
(4.62)

For the first term in (4.62), we can apply Lemma 4.9.5 and Lemma 4.9.4 to get∥∥TK (Q+K⊤RK
)
− TK∗

(
Q+K⊤RK

)∥∥
≤ξγρ∥FK∗ −FK∥∥Q+K⊤RK∥ ≤ 2ρξγρ∥B∥ ∥K∗ −K∥ ·

(
∥Q∥+ ∥R∥∥K∥2

)
.

(4.63)

For the second term in (4.62), note that by Lemma 17 in [53], ∥TK∥ ≤ 1
µ
∥TK(E[x0x⊤0 ])∥.

Since SK,Σ ⪰ TK(E[x0x⊤0 ]), thus ∥TK∥ ≤ 1
µ
σmax

(
TK(E[x0x⊤0 ])

)
≤ 1

µ
∥SK,Σ∥. Then we have

∥TK∗∥∥K∗⊤RK∗ −K⊤RK∥
=∥TK∗∥∥K∗⊤RK∗ −K∗⊤RK +K∗⊤RK −K⊤RK∥
≤∥TK∗∥∥R∥∥K −K∗∥ (∥K∗∥+ ∥K∥)

≤∥SK∗,Σ∗∥
µ

∥R∥∥K −K∗∥ (∥K∗∥+ ∥K∥) .

(4.64)

Plugging (4.63), (4.64), and (4.23) in (4.62) completes the proof.

With these lemmas, the proof of Lemma 4.5.4 is completed as follows:

Proof. (of Lemma 4.5.4). Let K ′ denote K(t+1) and K denote K(t). With the assumption
that ∥A−BK ′∥ ≤ ρ, ∥A−BK∗∥ ≤ ρ, we can apply Lemma 4.5.3 to get

∥SK∗,Σ∗ − SK′,Σ′∥ ≤ ωγ,ρ∥B∥2∥Σ∗ − Σ′∥
+
(
ξγ,ρ · ∥E[x0x⊤0 ]∥+ ζγ,ρ · ∥BΣ∗B⊤ +W∥

)
· 2ρ∥B∥ ∥K∗ −K ′∥ .

(4.65)

Apply Lemma 4.9.6 and Lemma 4.9.8 to get

∥K ′ −K∗∥ ≤
(
1 + σmin(R) · ∥γB⊤PK∗B +R∥+ cγσmin(R)

(
∥B∥∥A∥+ ∥B∥2κ

) )
· ∥K −K∗∥.

Apply Lemma 4.9.7 and 4.9.8 to get ∥Σ′ − Σ∗∥ ≤ τγ∥B∥2∥PK−PK∗∥
2σmin(R)2

≤ c τγ∥B∥2∥K−K∗∥
2σmin(R)2

. Finally,

plugging the above two inequalities into (4.65) finishes the proof.
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[146] Balint Varga, Jairo Inga, and Sören Hohmann. Limited information shared control:
A potential game approach. IEEE Transactions on Human-Machine Systems, 53(2):
282–292, 2022.

[147] John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, Princeton, NJ, USA, 1944.

[148] Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in
continuous time and space: A stochastic control approach. The Journal of Machine
Learning Research, 21(1):8145–8178, 2020.

[149] Haoran Wang, Thaleia Zariphopoulou, and Xunyu Zhou. Exploration versus exploita-
tion in reinforcement learning: A stochastic control approach. Journal of Machine
Learning Research, 21:1–34, 2020.

[150] Zifan Wang, Yulong Gao, Siyi Wang, Michael M Zavlanos, Alessandro Abate, and
Karl Henrik Johansson. Policy evaluation in distributional lqr. In Learning for Dy-
namics and Control Conference, pages 1245–1256. PMLR, 2023.

[151] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning.
Journal of Big data, 3(1):1–40, 2016.

[152] Ronald J Williams and Jing Peng. Function optimization using connectionist rein-
forcement learning algorithms. Connection Science, 3(3):241–268, 1991.

[153] Jiongmin Yong and Jianfeng Zhang. Non-equivalence of stochastic optimal control
problems with open and closed loop controls. Systems & Control Letters, 153:104948,
2021.

[154] Jiongmin Yong and Xun Yu Zhou. Stochastic Controls: Hamiltonian Systems and HJB
Equations, volume 43 of Applications of Mathematics. Springer, 1999.



BIBLIOGRAPHY 153
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